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Foreword

t is our pleasure to welcome Jean Pierre Boon and Constantino
Tsallis as guests Editors for the present Special Issue of
Europhysics News on “Nonextensive Statistical Mechanics” They
did a great job not only in selecting an impressive set of distin-
guished authors but also in writing the introductory Editorial and
in each being a co-author of one of the contributions. The subject
is difficult and could not go without a higher proportion of equa-
tions than usual in EPN: our thanks go to the EPN designer who
had to face a heavier task than usual. It is sometimes necessary to
address arduous developments to cover recent progress in Physics.
This time, EPN will ask its readers to make an effort. It is always
rewarding. The guests Editors were so efficient that the collected
material passes largely the size of a standard EPN issue. We are
grateful to the Publisher for accepting to accommodate all the
articles in a single volume. It will make of this Special Issue the gen-
eral reference work on “nonextensive statistical mechanics” Back to

the usual mix of wide-ranging Features and News next time!
The Editors

Special issue overview
Nonextensive statistical
mechanics: new trends,
new perspectives

Jean Pierre Boon ' and Constantino Tsallis >°

" CNLPCS, Campus Plaine — CP 231 Université Libre de
Bruxelles, B-1050 Bruxelles, Belgium

? Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico
87501, USA

* Centro Brasileiro de Pesquisas Fisicas, Xavier Sigaud 150,
22290-180 Rio de Janeiro-R], Brazil

Boltzmann—Gibbs (BG) statistical mechanics is one of the mon-
uments of contemporary physics. It establishes a remarkably
useful bridge between the mechanical microscopic laws and classi-
cal thermodynamics. It does so by advancing a specific connection,

FEATURES

Spe=-k2| pi In p; in its discrete version, of the entropy a la Clau-
sius with the microscopic states of the system. However, the BG
theory is not universal. It has a delimited domain of applicability,
as any other human intellectual construct. Outside this domain, its
predictions can be slightly or even strongly inadequate. No surprise
about that. That theory centrally addresses the very special station-
ary state denominated thermal equilibrium. This macroscopic state
has remarkable and ubiquitous properties, hence its fundamental
importance. The deep foundation of this state and of 27-year-old
Boltzmann’s famous Stosszahlansatz (“molecular chaos hypothe-
sis”) in 1871 lie on nonlinear dynamics, more specifically on strong
chaos, hence mixing, hence ergodicity. However many important
phenomena in natural, artificial, and even social systems do not
accomodate with this simplifying hypothesis. This is particularly
frequent in physical sciences as well as in biology and economics,
where non-equlibrium stationary states are the common rule. Then,
at the microscopic dynamical level, strong chaos is typically replaced
by its weak version, when the sensitivity to the initial conditions
grows not exponentially with time, but rather like a power-law.

A question then arises naturally, namely: Is it possible to address
some of these important - though anomalous in the BG sense - situa-
tions with concepts and methods similar to those of BG statistical
mechanics? Many theoretical, experimental and observational indi-
cations are nowadays available that point towards the affirmative
answer. A theory which appears to satisfactorily play that role is
nonextensive statistical mechanics and its subsequent developments.
This approach, first proposed in 1988, is based on the generaliza-
tion of the BG entropy by the expression

1—2?: p!

q—1

Sq=k Z:"':I pilng(1/p;) =k

with index q € R and S; = Spg, i.e. the BG theory is contained as the
particular case g = 1 (see the Box). S, shares with S a variety of
thermodynamically and dynamically important properties. Among
these we have concavity (relevant for the thermodynamical stability
of the system), experimental robustness (technically known as
Lesche-stability, and relevant for the experimental reproducibility of
the results), extensivity (relevant for having a natural matching
with the entropy as introduced in classical thermodynamics), and
finiteness of the entropy production per unit time (relevant for a vari-
ety of real situations where the system is striving to explore its
microscopic phase space in order to ultimately approach some kind
of stationary state). This is quite important because it is not easy to
find entropic functionals that simultaneously and generically satis-
fy these four properties. Renyi entropy, for instance, is known to be
an interesting form for characterizing multifractals. But it seems
inadequate for thermodynamical purposes. Indeed, Renyi entropy
satisfies concavity only in the interval 0 < g < 1, and violates, for q
# 1, all the other three properties mentioned above. The extensivi-
ty of S, deserves a special mention. Indeed, if we compose

BASIC QUANTITIES

< Box: The two basic functions that appear

1
g-exponential : exp, (x) = [1 4+ (1 — ¢) x] ™7 — 41 €”

in Nonextensive Statistical Mechanics are the
g-exponential and the g- logarithm with

l—q_-l
=g

g-logarithm : Ing (&) = = —g—1 Ina

Ing(expq x) = expq(lng x) = x. They are simple
generalizations of the usual exponential and

Boltzmann-Gibbs entropy : Spg = —k E:":l pilnp;

logarithmic functions which are retrieved by

g 15 W . .
g-entropy : Sy = A'—%-I-ll’- =k Z:Ll pilng(1/pi) = —k Z:Ll p! In, p;

performing a |1 - q| << 1 expansion. Similarly
the g-entropy generalizes the standard

—q—1 SBG 8
ot Boltzmann-Gibbs entropy.The escort

Escort distribution : P; = p!/ Z':L] IH

distribution is a generalization of the usual

Ensemble g-average : (4}, = Z:":l AP = Z:“zl A; p:."fzu'-

j=1

ensemble averaging function to which it

1 —
p; reduces forg=1.
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subsystems that are (explicitly or tacitly) probabilistically indepen-
dent, then Spg is extensive whereas S, is, for q # 1, nonextensive. This
fact led to its current denomination as “nonextensive entropy’.
However, if what we compose are subsystems that generate a non-
trivial (strictly or asymptotically) scale-invariant system (in other
words, with important global correlations), then it is generically S,
for a particular value of q # 1, and not S, which is extensive. Ask-
ing whether the entropy of a system is or is not extensive without
indicating the composition law of its elements, is like asking whether
some body is or is not in movement without indicating the referen-
tial with regard to which we are observing the velocity.

The overall picture which emerges is that Clausius thermody-
namical entropy is a concept which can accomodate with more
than one connection with the set of probabilities of the microscop-
ic states. Spg is of course one such possibility, S, is another one, and
it seems plausible that there might be others. The specific one to be
used appears to be univocally determined by the microscopic
dynamics of the system. This point is quite important in practice. If
the microscopic dynamics of the system is known, we can in prin-
ciple determine the corresponding value of g from first principles.
As it happens, this precise dynamics is most frequently unknown
for many natural systems. In this case, a way out that is currently
used is to check the functional forms of various properties associ-
ated with the system and then determine the appropriate values of
q by fitting. This has been occasionally a point of — understandable
but nevertheless mistaken — criticism against nonextensive theory,
but it is in fact common practice in the analysis of many physical
systems. Consider for instance the determination of the eccentrici-
ties of the orbits of the planets. If we knew all the initial conditions
of all the masses of the planetary system and had access to a colos-
sal computer, we could in principle, by using Newtonian mechanics,
determine a priori the eccentricities of the orbits. Since we lack that
(gigantic) knowledge and tool, astronomers determine those eccen-
tricities through fitting. More explicitly, astronomers adopt the
mathematical form of a Keplerian ellipse as a first approximation,
and then determine the radius and eccentricity of the orbit through
their observations. Analogously, there are many complex systems
for which one may reasonably argue that they belong to the class
that is addressed by nonextensive statistical concepts, but whose
microscopic (sometimes even mesoscopic) dynamics is inaccessible.
For such systems, it appears as a sensible attitude to adopt the math-
ematical forms that emerge in the theory, e.g. g-exponentials, and
then obtain through fitting the corresponding value of g and of
similar characteristic quantities.

Coming back to names that are commonly used in the literature,
we have seen above that the expression “nonextensive entropy” can
be misleading. Not really so the expression “nonextensive statistical
mechanics” Indeed, the many-body mechanical systems that are
primarily addressed within this theory include long-range interac-
tions, i.e., interactions that are not integrable at infinity. Such
systems clearly have a total energy which increases quicker than N,
where N is the number of its microscopic elements. This is to say a
total energy which indeed is nonextensive.

Acknowledgements

The present special issue of Europhysics News is dedicated to a
hopefully pedagogical presentation, to the physics community, of
the main ideas and results supporting the intensively explored and
quickly evolving nonextensive statistical mechanics. The subjects
that we have selected, have been chosen in order to provide a gen-
eral picture of its present status in what concerns both its
foundations and applications. It is our pleasure to gratefully
acknowledge all invited authors for their enthusiastic participation.
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Extensivity and entropy
production

Constantino Tsallis **, Murray Gell-Mann ' and Yuzuru Sato ' *'
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico
87501, USA

? Centro Brasileiro de Pesquisas Fisicas, Xavier Sigaud 150,
22290-180 Rio de Janeiro-R], Brazil

* tsallis@santafe.edu, mgm@santafe.edu, ysato@santafe.edu

n 1865 Clausius introduced the concept of entropy, S, in the
I context of classical thermodynamics. This was done, as is well
known, without any reference to the microscopic world. The first
connection between these two levels of understanding was pro-
posed and initially explored one decade later by Boltzmann and
then by Gibbs. One of the properties that appear naturally within
the Clausius conception of entropy is the extensivity of S, i.e., its
proportionality to the amount of matter involved, which we inter-
pret, in our present microscopic understanding, as being
proportional to the number N of elements of the system. The
Boltzmann-Gibbs entropy Sge = -k2.1%, pi In p; (discrete version,
where W is the total number of microscopic states, with proba-
bilities {pi}, and where k is a positive constant, usually taken to be
kg). Spg satisfies the Clausius prescription under certain condi-
tions. For example, if the N elements (or subsystems) of the
system are probabilistically independent, i.e., pij»iys..oriy =
PirPiy- - -Piny » we immediately verify that Spe(N) o< NSp(1). If th
correlations within the system are close to this ideal situation (e.g.,
local interactions), extensivity is still verified, in the sense that
SpG(N) o< N in the limit N — oo, There are however more com-
plex situations (that we illustrate later on) for which Sz is not
extensive. The question then arises: Is it possible, in such complex
cases, to have an extensive expression for the entropy in terms of the
microscopic probabilities? The general answer to this question still
eludes us. However, for an important class of systems (e.g., asymp-
totically scale-invariant), one such entropic connection is known,
namely

L=y o
S, = A:% (g €R: Sy = Spa). W
(N=0) 1 1
(N=1) To 1 172 172
(N=2) Qo M1 T2 1/3 1/6 1/3
(N=3) T30 31 J32 T133 3/8 5/48 5/48 0
(N=4) Ty T4] T2 T43 T44 2/5 3/40 1/20 0 0

A Table: Left: Most general set of joint probabilities for N equal
and distinguishable binary subsystems for which only the
number of states 1 and of states 2 matters, not their ordering.
Right: Triangle with e = 0.5 and d = 2 constructed by
modifying the Leibnitz-triangle.In general g.., = 1-(1/d).

For N=5,6, ... a full triangle emerges (on the right side) all
the elements of which vanish. For any finite N, the Leibnitz
rule is not exactly satisfied, but it becomes asymptotically
satisfied for N — oo. See details in [3].
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This expression was proposed in 1988 [1] as a possible basis for a
generalization of Boltzmann- Gibbs statistics currently referred to
as nonextensive statistical mechanics (see [2] for a set of minire-
views). In such a theory the energy is typically nonextensive
whether or not the entropy is.

Let us illustrate, for both g = 1 and g # 1, the extensivity of S;in
some examples [3]. Consider a system composed of N identical
and distinguishable subsystems (or elements). Let us assume for
simplicity that each of those elements corresponds to a proba-
bilistic binary variable which takes values 1 and 2. The joint
probabilities of such a system can be represented as in Table I with

S e e =1 (nae [0,1;N=1,2,3,..5n=0,1,...,N).

Let us impose the scale-invariant constraint 7y, + Ttny 11 = TTn-
n(n=0,1,...,N-1; N= 2, 3, ...) . Hereafter we refer to this
relation as the Leibnitz rule. Indeed, it is satisfied by the Leibnitz
triangle: (J'Clo, J'[u) = (1/2, 1/2), (J'Ez(), 721, J'[zz) = (1/3, 1/6, 1/3),
(7030, W31, W32, 7033) = (1/4, 1/12,1/12, 1/4), etc. By inserting these
probabilities into expression (1) we can calculate S;(N) as shown
in Fig.1(a). We see that S, is extensive only for q = 1. This charac-
terizes a typical Boltzmannian system. Let us now consider the
probabilities in the table. They have been constructed by starting
with Leibnitz triangle, then gradually introducing a zero proba-
bility triangle on its “right” side as indicated in Table I [3]. The
total measure associated is then redistributed on a strip on the

europhysics news NOVEMBER/DECEMBER 2005

“left side” whose width is d. The distribution is such that
Tino >> TNy >> ..., the discrepancies becoming larger as N — oo,
It can be shown [3] that this system satisfies the Leibnitz rule not
strictly but only asymptotically, i.e., for N — eo. If we now cal-
culate S4(N) we get the result shown in Fig. 1(b). We see that
now S, is extensive only for g = 1/2. In fact, for a large class of
probability sets, S, is extensive only for a special value of g, from
now on denoted g, for reasons that will soon become clear
(sen stands for sensitivity). The property Sy(A + B)/k = [S,(A)/k]
+ [Sq(B)/k] + (1 - q)[Sq(A)/k][S4(B)/k], which led to the term
“nonextensive entropy’, is valid only if the subsystems A and B
are explicitly or tacitly assumed to be probabilistically indepen-
dent.

We shall now address a completely different problem, name-
ly that of entropy production per unit time. The system now is a
specific one, classical and following deterministic nonlinear
dynamics. In particular its value of N is fixed. We consider the
D(N)-dimensional phase space, and denote by Wj its Lebesgue
measure. We then make a partition of it into small cells whose
linear size is €. The total number W(IN) >> 1 of cells (designated
byi=1,2,...,W(N)) is given by W(N) o< Wy/e "™ with D(N) o<
N (N — o). If the phase space is a D(N)-dimensional hyper-
cube, then W(N) = Wy/e "™. If the system is a classical
Hamiltonian one, then D(N) ~ 2 d;N (N — o), where d, = space
dimension.
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0

0 t

A Fig. 2: Schematic time-dependence of S, for various degrees
of fine-graining e.We are disregarding in this scenario the
influence of possible averaging over initial conditions that
might be necessary or convenient.

We choose one of those cells and in it we randomly pick
M >> 1 initial conditions. As time ¢ (assumed discrete, i.e., t = 0,
1,2, ...) evolves, these M points spread around into {M;(t)} with

1Y Mi(t) = M. We can then define a set of probabilities {pi(t)}
by pi = Mi(t)/M. With these probabilities we can calculate Sy(N,
t; €, M) for that particular initial cell. Then, depending on our
focus, we may or may not average over all or part of the possi-
ble initial cells (both situations have been analyzed in the
literature). We consider now two different cases, namely strong
chaos (i.e., the maximal Lyapunov exponent is positive), and
weak chaos (i.e., the maximal Lyapunov exponent vanishes).
Both are illustrated in Figs. 1(c) and 1(d) for a very simple sys-
tem, namely the logistic map x; 11 = 1 - ax ; with 0 < a < 2, and
-1 < x; < 1. For infinitely many values of the control parameter
a (e.g., a = 2), we have strong chaos (this is the case in Fig. 1(c)
with a = 2). But for other (infinitely many) values of a, we have
weak chaos (this is the case in Fig. 1(d) with a = 1.401155...). As
we can see, it is quite remarkable how strongly similar all four
figures 1 are. This suggests the following conjecture:
_‘}IlIII]L.".II,rs“_l:.-'\'.Lr M)~ ANg, (te) (1=0,1,2,.5i>>1; N>> 1), (2)
as schematised in Fig. 2. (A is a positive constant.) We emphasize
that this conjecture is built to some extent upon observations
made on the time-dependence of low-dimensional systems, such
as the logistic map and similar dissipative maps ( [5] and refer-
ences therein) as well as two-dimensional conservative maps [6].
Whether similar behavior indeed holds for the time-dependence
of high-dimensional dissipative or Hamiltonian systems with
N >> 1 obviously remains to be checked.

Conjecture (2) has two consequences. The first of them is that,
since by definition of 4, itis lim ¢ 0 S, (t, €) ~ K, we have that
lim e 0 im o S, (N, 15 €, M) ~ AKy,,, Nt. This means, interest-
ingly enough, that N and t play similar roles. The second
consequence concerns the case when we have a fine but finite
graining €, for example that imposed by quantum considera-
tions. Then we typically expect the expressions lim y— . lim /-

S, . . . S
L2 (N, 656 M) o q 1im e 1im ae M arses a5 (N, 1,6, M)

Nt Nt

lim M-

to coincide for typical g = 1 systems, and to differ for more complex

188

systems (g # 1), as might well be the case for long-range-
interacting Hamiltonians [7].

Let us illustrate, for a one-dimensional map, an important
property associated with Eq. (2). The sensitivity & to the initial
conditions is defined through & = limax ()0 Ax(#)/Ax(0), where
Ax(0) is the discrepancy of two initial conditions. For a wide
class of one-dimensional systems we have the upper bound & =
e;zjj”t, where e = [1+(1-q)x]""? (ef = €¥), and A,,, a g-gener-
alised Lyapunov coefficient . The property we referred to is that
the entropy production per unit time K, satisfies K, = Aq,,,
[8]. This generalises, for g #1, a relation totally analogous to the
Pesin identity, which plays an important role in strongly chaot-
ic systems (i.e., q,,, = 1). It is clear that K, is a concept closely
related to the so called Kolmogorov-Sinai entropy. They fre-
quently, but not always, coincide. As we have shown, S, can, for
either g = 1 or g # 1, be extensive under suitable conditions and
lead to a finite entropy production per unit time. Other impor-
tant properties are satisfied, such as concavity and Lesche-stability
(or experimental robustness) [9]. Moreover, the celebrated
uniqueness theorems of Shannon and of Khinchine have also
been g-generalised [10,11], and the same has been done with
central procedures such as the Darwin-Fowler steepest descent
method [12]. In short, a consistent mathematical structure is in
place suggesting that the Boltzmann-Gibbs theory can be satis-
factorily extended to deal with a variety of complex statistical
mechanical systems. Since the first physical application [13] (to
stellar polytropes), nonextensive statistical mechanics and its
related concepts have made possible applications to very many
natural and artificial systems, from turbulence to high energy
and condensed matter physics, from astrophysics to geophysics,
from economics to biology and computational sciences (e.g.,
signal and image processing). Recently, connections with scale-
invariant networks, quantum information, and a possible
g-generalisation of the central limit theorem [14,15] have been
advanced as well. In some of these problems, when the precise
dynamics is known, the indices q are in principle computable
from first principles. In others, when neither the microscopic
nor the mesoscopic dynamics is accessible, only a phenomeno-
logical approach is possible, and then g is determined through
fitting. An interesting determination of this kind was recently
carried out in the solar wind as observed by Voyager 1 in the dis-
tant heliosphere [16]. Indeed, the g-triplet that had been
conjectured was fully determined for the first time in a physical
system. The overall scenario which emerges is indicated in Fig. 3.

g-describable non g-describable
=1 q#1
local global
correlations correlations
A Fig. 3: Scenario within which nonextensive statistical
mechanics is located (see [3] for more details) [18].
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There is a plethora of open problems, as can be easily guessed.
Both at the level of the foundations (e.g., the dynamical origin
[17]) and at that of specific applications. The fact that some basic
questions are not yet fully understood even for Boltzmann-Gibbs
statistics does not make the task easy. As an illustration of an
important open problem let us mention long-range-interacting
Hamiltonians. Although many favorable indications are avail-
able in the literature, it is still unknown, strictly speaking, if and
how the present theory is applicable, and what is the value of g
as a function of the range of the forces and of the space dimen-
sion. Solutions of problems such as this one are obviously very
welcome. Let us finally mention that related or even more gen-
eral approaches than the present one are already available in the
literature. Such is the case of the Beck-Cohen superstatistics
and the Kaniadakis statistics, that have already shown interesting
specific applications.
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n equilibrium statistical mechanics, the inverse temperature [ is
I a constant system parameter — but many nonequilibrium sys-
tems actually exhibit spatial or temporal temperature fluctuations
on a rather large scale. Think, for example, of the weather: It is
unlikely that the temperature in London, New York, and Firenze is
the same at the same time. There are spatio-temporal temperature
fluctuations on a rather large scale, though locally equilibrium sta-
tistical mechanics with a given fixed temperature is certainly valid.
A traveller who frequently travels between the three cities sees a
‘mixture’ of canonical ensembles corresponding to different local
temperatures. Such type of macroscopic inhomogenities of an
intensive parameter occur not only for the weather but for many
other driven nonequilibrium systems as well. There are often cer-
tain regions where some system parameter has a rather constant
value, which then differs completely from that in another spatial
region. In general the fluctuating parameter need not be the inverse
temperature but can be any relevant system parameter. In turbulent
flows, for example, a very relevant system parameter is the local
energy dissipation rate €, which, according to Kolmogorov’s theo-
ry of 1962 [1], exhibits spatio-temporal fluctuations on all kinds of
scales. Nonequilibrium phenomena with macroscopic inho-
mogenities of an intensive parameter can often be effectively
described by a concept recently introduced as ‘superstatistics” [2].
This concept is quite general and has been successfully applied to a
variety of systems, such as hydrodynamic turbulence, atmospheric
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A Fig. 1: Time series of a temporal wind velocity difference
u(t) (6= 60 min) recorded by anemometer A every 5 min for
one week (green line) and the corresponding parameter [(t)
(red line), as well as the corresponding standard deviation
o(t) (blue dotted line), both for a 1 hour window.
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turbulence, pattern formation in Rayleigh-Benard flows, cosmic
ray statistics, solar flares, networks, and models of share price
evolution [3]. For a particular probability distribution of large-
scale fluctuations of the relevant system parameter, namely the
Gamma-distribution, the corresponding superstatistics reduces to
Tsallis statistics [4], thus reproducing the generalized canonical
distributions of nonextensive statistical mechanics by a plausible
physical mechanism based on fluctuations.

In this article we want to illustrate the general concepts of
superstatistics by a recent example: atmospheric turbulence. Rizzo
and Rapisarda [5, 6] analysed the statistical properties of turbu-
lent wind velocity fluctuations at Florence Airport. The data were
recorded by two head anemometers A and B on two poles 10 m
high a distance 900 m apart at a sampling frequency of 5 min-
utes. Components of spatial wind velocity differences at the two
anemometers A and B as well as of temporal wind velocity differ-
ences at A were investigated.

Analysing these data, two well separated time scales can be
distinguished. On the one hand, the temporal velocity difference
u(t) = v(t + 8) - v(t) (as well as the spatial one) fluctuates on the
rather short time scale 7 (see Fig. 1). On the other hand, we may
also look at a measure of the average activity of the wind bursts in
a given longer time interval, say 1 hour, where the signal behaves
approximately in a Gaussian way. The variance of the signal u(f)
during that time interval is given by ¢* = (u?) - (u)*, where(...)
means taking the average over the given time interval. We then
define a parameter [3(¢) by the inverse of this local variance (i.e. B
= 1/0%). B depends on time t, but in a much slower way than the
original signal. Both signals are displayed in Fig. 1. One clearly
recognizes that the typical time scale T on which 3 changes is much
larger than the typical time scale 7 where the velocity (or velocity
difference) changes.

Dividing the wind flow region between A and B into spatial
cells, so that air flows from one cell to another, one assumes that
each cell is characterized by a different value of the local variance
parameter 3, which plays a similar role as the inverse temperature in
Brownian motion and fluctuates on the relatively long spatio-
temporal scale T. As mentioned before, one can then distinguish
two well separated time scales for the wind through the cells: a short
time scale 7 which allows velocity differences u to come to local
equilibrium described by local Gaussians ~ exp[-f+#], and a long
time scale T, which characterizes the long time secular fluctuations
of 8 over many cells. Similar fluctuations of a local variance para-
meter are also observed in financial time series, e.g. for share price
indices, and come under the heading ‘volatility fluctuations’ [7].

A terrestrial example would be a Brownian particle of mass m
moving from cell to cell in an inhomogeneous fluid environment
characterized by an inverse temperature 3 which varies slowly
from cell to cell. The two time scales are then the short local time
scale 7 on which the Brownian particle reaches local equilibrium
and a long global time scale over which [ changes significantly. If
the particle moves for a sufficiently long time through the fluid
then it samples, in the cells it passes through, values of 3 distrib-
uted according to a probability density function f(f3), which leads
to a resulting long-term probability distribution p(v) to find the
Brownian particle in the fluid with velocity v given by p(v) ~
Je ‘lzim"zf( B)dp. This is like a superposition of two statistics in the
sense that p(v) is given by an integral over local statistics given by
the local equilibrium Boltzmann statistics convoluted with the
statistics f(3) of the B occurring in the Boltzmann statistics. In
other words, it is a ‘statistics of a statistics’ or a superstatistics.

Returning now to the atmospheric experiment, it is this super-
statistics which is employed here to analyse the wind data.
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However, there is a fundamental difference in the interpretation of
the corresponding variables: First of all, the variable v (the veloc-
ity of the Brownian particle) corresponds to the longitudinal
velocity difference in the flow (either spatial or temporal), not the
velocity itself. Secondly, since we are analyzing turbulent velocity
fluctuations and not thermal ones, the parameter 3 is a local
variance parameter of the macroscopic turbulent fluctuations and
hence it does not have the physical meaning of an inverse tem-
perature as given by the actual temperature at the airport. Rather,
it is much more related to a suitable power of the local energy
dissipation rate €. The fluctuations of the variance parameter 3
can be analysed using time windows of different lengths. Rizzo
and Rapisarda carried this out for two time series of interest: for
the temporal fluctuations of the wind velocity component (in the
x-direction) as recorded at the anemometer A and also the spatial
fluctuations as given by the longitudinal wind velocity differences
between the anemometers A and B. The probability distribution
of B as obtained for the temporal case is shown in Fig. 2 for a
time window of 1 hour. For comparison, the dashed (blue) line
shows a Gamma or jy’-distribution function, which is of the
general form f(f8) ~ B<'e?'®, with b and ¢ appropriate constants.
The solid (red) line represents a lognormal distribution function
which is of the general form f(8) ~ (1/s) exp[-(log(B/1))* /(2s?)],
with t and s appropriate constants. Apparently, the data are rea-
sonably well fitted by a lognormal distribution (note that a
different conclusion was reached by Rizzo and Rapisarda in [5, 6])
We see that our result for atmospheric turbulence is similar to lab-
oratory turbulence experiments on much smaller space and time
scales, such as a turbulent Taylor-Couette flow as generated by two
rotating cylinders. For Taylor-Couette flow it has been shown [8]
that fis indeed lognormally distributed, see Fig. 3.

In general, for a given nonequilibrium system the probability
density of the parameter is ultimately determined by the under-
lying spatio-temporal dynamics of the system under consideration.

The Gamma distribution results if § can be represented by a
sum of n independent squared Gaussian random variables X;
(with i = 1; ...; n) with mean zero, i.e. =221, X;> 0. The con-
stants ¢ and b above are related to n.

The lognormal distribution results if 3 is due to a multiplica-
tive cascade process, i.e. if it can be represented by a product of n
independent positive random variables &;, i.e. B =], & or
log B=2%, log &;. Due to the Central Limit Theorem, under
suitable rescaling the latter sum will become Gaussian for large 7.
But if log is Gaussian this means that 3 is lognormally distributed.

We notice that the difference between the Gamma distribution
and the lognormal distribution is essentially that of an additive
versus a multiplicative definition of . So far there is no theory of
turbulence, but following Kolmogorov [1], the mechanism of the
turbulent motion of the fluid is critically determined by the trans-
fer mechanism of the energy dissipation between neighboring cells
and between different spatial scales in the flow. A multiplicative
cascade process is expected to lead to a lognormally distributed f3.
It seems that the above mentioned transfer mechanism for energy
dissipation is similar for turbulent wind fluctuations and laborato-
ry turbulence, which are performed under very different
conditions. The spatial scale of environmental turbulence as mea-
sured at the airport is much larger than in the laboratory, moreover
the Reynolds number fluctuates for the wind measurements,
whereas in the laboratory experiments it is controlled.

The probability density p(u) of longitudinal wind velocity dif-
ferences u (either temporal or spatial) as measured at the airport
has strong deviations from a Gaussian distribution and it exhibits
prominent (‘fat’) tails (see Fig. 4). In superstatistical models one

europhysics news NOVEMBER/DECEMBER 2005

FEATURES

can understand these tails simply from a superposition of
Gaussian distributions whose inverse variance f fluctuates on a
rather large spatio-temporal scale. In the long-term run one has
p(u) ~  [5 f(PeP¥dpB, and generically these types of distribu-
tions p(u) exhibit broader tails than a Gaussian.

For the special case that f(f3) is a Gamma distribution the
integral can be explicitely evaluated, and one ends up with the
generalized canonical distributions (g-exponentials) of nonexten-
sive statistical mechanics, i.e. p(u) ~ (1+B(q-1) %uz)’ﬁ , where B
is proportional to the average of S and q is an entropic parameter
[2, 4]. These distributions asymptotically decay with a power law.
For other f() (such as the lognormal distributions relevant in our
case), the integral cannot be evaluated explicitly, and more com-
plicated behaviour arises. However, it can be shown that for
sharply peaked distributions f(f3) a g-exponential for p(u) is
often a good approximation provided |u] is not too large [2].

Quite generally, the superstatistics approach also gives a plau-
sible physical interpretation to the entropic index g. One may
generally define

(B

=
where (B)= [ f(B)BdB and {B°)= | f(B)B*dB denote the average

and second moment of f3, respectively. Clearly, if there are no
fluctuations in B at all but B1is fixed to a constant value 3y, one has
(B)={(B)*= Bi, hence in this case one just obtains g = 1 and ordi-
nary statistical mechanics arises. On the other hand, if there are
temperature fluctuations (as in most nonequilibrium situations)
then those are effectively described by g > 1. For the special case
that f(f) is a Gamma-distribution, the g obtained by eq. (1)
coincides with Tsallis” entropic index q (up to some minor cor-
rection arising from the local 3-dependent normalization
constants). But the superstatistics concept is more general in that
it also allows for other distributions f(f3), as for example the log-
normal distribution observed in Fig. 2 and 3. General
superstatistics can lead to a variety of distributions p(u) with
prominent (’fat’) tails, i.e. not only power laws but, for example,
also stretched exponentials tails and much more. The atmos-
pheric turbulence data seem roughly consistent with
Kolomogorov’s general ideas of a lognormally distributed fluctu-
ating energy dissipation rate, as are the laboratory turbulence
data. In that connection comparison with long range oceanic
measurements of a similar kind as the atmospheric wind experi-
ments discussed here might be instructive, testing yet larger scales.
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Statistical physics today is arguably in much the same situation
that Euclidean geometry found itself in the early nineteenth
century. Over the last decade, an increasing body of evidence has
indicated that denying a certain postulate of statistical physics —
the extensivity of the entropy — results not in a contradiction, but
rather in an entirely new family of mathematically consistent
variants of the statistical physics developed by Boltzmann and
Gibbs (see Editorial).

The mathematical formulation of these variants begins with a
generalization of the definition of the entropy in terms of the
microscopic state probabilities of the system under study (see Box
1 in the Editorial). A family of such entropies has been posited,
parametrized by a single positive number ¢, such that the usual
Boltzmann- Gibbs formulation is recovered when g = 1. More
precisely, whereas the Boltzmann-Gibbs entropy is expressed in
terms of the logarithm function, nonextensive variants are
expressed in terms of a g-deformed logarithm (defined in Box 1)
to which application of 'Hépital’s rule confirms reduction to the
ordinary logarithm as g — 1. Remarkably, many fundamental
results of statistical physics, such as the Maxwell relations and
Onsager reciprocity, are “g-invariant”; that is, they hold for any
statistical physics in the family. Other results, such as the Fluctua-
tion-Dissipation Theorem and the compressible Navier-Stokes
equations for viscous fluid dynamics, must be modified by the
addition of terms that vanish when g = 1.

Entropic Lattice Boltzmann Models

In the late 1980’s and early 1990’s, it was realized that lattice kinetic
models could be used to great advantage in the construction of
new algorithms for computational fluid dynamics [1]. These are
models wherein particles hop about on a regular spatial lattice in
discrete time steps according to deterministic rules, with velocities
restricted to the lattice vectors, and with collisions conserving
mass and momentum. Unlike particles in a continuum fluid,
whose velocities take on values in R?, the velocity space of a lat-
tice kinetic model consists of a finite set of points. Hydrodynamic
quantities — such as mass density and momentum density — may
be obtained from such a discrete-velocity distribution by a finite
sum, rather than an integral.

It is possible to construct Boltzmann equations for the single-
particle distribution function for lattice fluids. At first, researchers
restricted their attention to Boltzmann equations for microscop-
ic models of discrete-velocity particles, but it was then realized
that lattice Boltzmann equations for discrete-velocity fluids could
be constructed with idealized collision operators that did not
correspond to any underlying particulate model [2]; even a single
relaxation time operator — a la Bhatnagar-Gross-Krook (BGK) —
replacing the full collision operator, could be used for this purpose
[3] giving rise to so-called lattice BGK equation: f; (r + v;At, t +At)
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A Fig. 1: Concentration fluctuations field in the onset of
fingering between two miscible fluids (flow direction South-
East) showing landscape of g-Gaussian “hills and wells” (color
code indicating highest positive values (red) to largest
negative values (magenta) of c).These structures identify the
existence of precursors to the fingering phenomenon as they
develop before any fingering pattern can be seen.

-fi(n 1) =T '(fi (1 t) - f"), where f; is the single-particle distri-
bution function for velocity v;, position r, and time .

Lattice Boltzmann equations derived from underlying micro-
scopic dynamical models with detailed balance possess a
discrete-space-time analog of Boltzmann’s celebrated H-Theorem,
which establishes that when the system evolves towards equilibri-
um it will reach a state of maximum entropy. That is — in
mathematical terms — it is possible to identify a Lyapunov func-
tion for the dynamics. From the point of view of the lattice
Boltzmann equation as a physical model, this maintains an
important property possessed by the continuum Boltzmann
equation. However lattice BGK models are not based on any
underlying microscopic dynamical model, and one of the prop-
erties lost in the transition from lattice models with a microscopic
basis to lattice models without one was the H-Theorem. The effort
to modify the lattice BGK model so that it has an H-Theorem led
to the proposal of so-called entropic lattice Boltzmann models in
the late 1990’s. These models begin by positing an H function of
trace form, depending on the single-particle distribution
function, and by dynamically adjusting the relaxation time in the
BGK operator to ensure that this H function does not increase.

Researchers then focussed efforts on finding the most general
class of entropic lattice Boltzmann model that would produce
correct macroscopic behavior, i.e. give rise to the Navier-Stokes
equations in the hydrodynamic limit [4]. These analyses restrict
attention to collision operators of BGK form, but with variable
relaxation time. They do not specify the precise form of the H
function; rather, they assume that H is of trace form
H(t) = 2,2 h (fj(r, 1)), where the outer sum is over the lattice and
the inner sum is over the finite set of velocities, without specifying
the form of the function h. Boltzmann’s H function would corre-
spond to the choice h(f) = fInf, but that assumption is not made
here. Of course the form of the equilibrium distribution function
will depend on the choice of h. Remarkably, it is possible to carry
out the entire Chapman-Enskog analysis for the above-described
model without ever specifying h. This results in the Navier-Stokes
equations with an extra factor multiplying the advective term, vV
v. This extra factor depends on h and its first two derivatives. The
Galilean invariance of the Navier-Stokes equations depends on
there being no such extra factor multiplying the advective term.
The convective derivative operator is Galilean invariant. The
above-described extra factor breaks that Galilean invariance. The
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breaking of Galilean invariance is not completely unexpected —
after all, the lattice itself constitutes a preferred Galilean reference
frame, and this problem had been noted in earlier microscopic
particulate lattice models of hydrodynamics. But now, however, it
is straightforward to restore Galilean invariance; we need only
demand that this extra factor be equal to one. Since the extra
factor depends on h and its first two derivatives, this results in a
second-order nonlinear ordinary differential equation for i, whose
solution is h(f ) = fln, f, where In is precisely the g-logarithm func-
tion [5] used in nonextensive statistical physics!

What this analysis shows is that lattice hydrodynamics provides an
example of a statistical mechanical system from which the g-
deformed functional form arises naturally, and can be demonstrated
from first principles. It should be emphasized that Boltzmann’s H
function is not the entropy! The entropy is a functional of the N-
body distribution function, whereas Boltzmann’s H function is a
functional of the single-particle distribution function. Nevertheless,
it is striking that just as the natural logarithm function appears in
Boltzmann’s entropy (see Box 1) and in Boltzmann’s H function,
the g-deformed logarithm function appears in the nonextensive
entropy, and in the H function for an entropic lattice Boltzmann
model. It is however important to acknowledge that an entropic
lattice Boltzmann model is not a natural physical system, but a
highly idealized model system (that has found importance in
numerical analysis). The analysis described above suggests that either
the fragmentation of space into a regular lattice, or the reduction of
velocity space to a finite set of points, or perhaps both, has resulted
in the natural appearance of the g-deformed logarithm. It may be
that similar fragmentation of phase space, possibly due to loss of
ergodicity — wherein time averages are not equal to phase space aver-
ages — gives rise to the appearance of this same functional form in the
entropy of certain complex systems.

Nonextensive diffusion as nonlinear response

One of the characteristic features of nonextensive statistical
mechanics is the appearance of non-exponential distribution
functions with power-law tails and there has been considerable
interest in the question of how such non-exponential distributions
might arise from first principle consideration [6]. For the diffusion
processes, power-law distributions follow, in a generic manner, from
a generalization of classical statistical mechanics linear response
theory. Suppose we are interested in the diffusion of a tracer parti-
cle in a fluid. We then consider the probability f (r, £ ro, 0) to find
the diffuser at point r at time ¢ given that it starts at point ro at time
0. This distribution function — but, instead of probabilities, we could
as well speak of the concentration of a diffusing species (as in the
example below) — as we know from linear response theory, obeys
the advection-diffusion equation.

Now if one makes the key assumption that the current is not
simply described by gradients in the distribution function, but
rather by gradients in the distribution raised to some power, one
can proceed essentially along the same lines of reasoning as in clas-
sical response theory, and obtain a generalized diffusion equation

3 o
%f(r,t:ru,o) =gg v (r,t) f (r,t;10,0)
a 0 o :
¥ o D(t)- 5]’ (r,t:rp,0) .

What makes this equation a generalized diffusion equation is the
power o # 1, and the generalized Einstein relation connecting the
diffusion coefficient D to the underlying microscopic dynamics
and corresponding distribution function.
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The generalized equation can be viewed as a classical diffusion
equation with an effective diffusion coefficient Do, = oD f “". Since
it is quite common to introduce concentration-dependent and
density-dependent diffusion coefficient to describe complex sys-
tems, this does not differ radically from classical phenomenology:
what is unusual is that the effective diffusion coefficient vanishes
when the probability (or concentration) vanishes. The generalized
diffusion equation has formally the same structure as the “porous
media equation”, but the diffusion coefficient depends on the
solution of the equation. This leads to the fact that the diffusion
process is classical in the sense that the mean-squared displace-
ment increases linearly with time, but the solutions are not
Gaussian: they have the canonical g-exponential form (see Box 1)
withg + o =2.

Precursor statistics
From a pragmatic viewpoint, the lattice Boltzmann equation — in
particular with the lattice BGK formulation (described above) —
can be used to simulate nonequilibrium systems [2]. In contrast
to other computational methods, the lattice Boltzmann method
offers a mesoscopic approach , which is based on a kinetic theo-
retical analysis where the macroscopic description (such as given
e.g. by the set of hydrodynamic equations) is not pre-established.
This approach was used for instance to investigate precursor phe-
nomena in the onset of fingering and the data were analyzed using
the generalized diffusion equation [8].

Fingering is a generic phenomenon that results from the desta-
bilization of the interface between two fluids with different
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A Fig. 2: (a) Upper panel: Concentration fluctuations profile
(solid line) obtained by a section plane cut through the hills
and wells in Fig.1; the dashed line is the g-Gaussian;

(b) Lower panel : Concentration fluctuations distribution
with power law: P(c) o< |c|? with g = 0.73 (solid line).
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mobilities (because of their differences in viscosity or density) in
systems such as a shallow layer or a porous medium, when the fluid
with highest mobility is forced through the other fluid. As soon the
system responds non-linearly to the driving force, enhanced inter-
nal fluctuations (such as concentration fluctuations) are produced
characterizing the early stage of the fingering process. If the fluids
are miscible, the mixing zone at the interface between the two flu-
ids grows as the fluid with high mobility displaces the other fluid,
and there is a dynamical transition where the exponent of the
growth of the mixing length of the interfacial zone, Lyix o< t*,
changes from p = 1/2 (the value typical of a diffusive process) to a
larger value. In the diffusive regime (before any fingering pattern
becomes visible), the flow produces local concentration gradients
which induce mobility fluctuations thereby triggering vorticity
fluctuations. The concentration field in Fig.1 shows that a “land-
scape” of alternating hills and wells has developed. In each blob’,
the concentration field exhibits a two-dimensional g-Gaussian
profile as illustrated in the upper panel of Fig.2 obtained by a sec-
tion plane cut through the extrema in Fig.1. Such g-Gaussians are
precisely solutions to the generalized diffusion equation. Now the
remarkable fact is that the distribution that follows from a g-
exponential profile has a power law behavior. In two dimensions
and for a g-Gaussian — as for the case of the concentration fluctu-
ations c in the fingering pre-transitional regime — the distribution
is simply P(c) o< ¢, as illustrated in Fig.2.

The example presented here is representative of a generic class
of driven nonequilibrium systems where g-exponentials and
power law distributions are the signature of long-range interac-
tions and whose dynamical behavior is governed by non-linear
equations, such as the generalized equation described above.

What has been shown is that during the onset of fingering, one
can identify precursors which exhibit statistical features typical of
nonextensive statistics. Then the question arises as to whether there
is a possible physical interpretation of the origin of nonextensivity?
The driving force produces a spatial sequence of alternating struc-
tures, which, if they were independent, would exhibit an ordinary
Gaussian profile originating from local diffusion centers (J-func-
tions), and would be described by a classical advection-diffusion
formulation. However, when growing, these structures develop into
overlapping Gaussian blobs, and what the analysis shows is that by
renormalizing the overlapping Gaussians, they are recast into a sum
of scale invariant independent g-Gaussians. Similar statistical prop-
erties have been obtained in other nonequilibrium systems which
are discussed in companion articles in the present issue.
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omplexity refers to the quality that certain systems possess of

being intricate and hardly predictable. Ranging from the
turbulent flows that form our atmosphere to the human languages,
our life has plenty of examples of natural complex behavior.
Statistical Mechanics, the area of physics that deals with the prob-
lem of explaining the macroscopic world from the dynamics of its
components, faces nowadays the challenge of applying the stan-
dard reductionist program to all these fascinating systems.

Even when the mathematical equations for describing its time
evolution may be only a few, a complex system is composed of a
huge number of interacting constituents. These constituents, usu-
ally very simple ones, interact giving rise to the emergence of an
unexpected collective phenomenology, where cause and effect
become subtle and where the long time behaviour is no longer
obvious. For succeeding in the plan of explaining complex behav-
ior from first principles, physicists have been looking for simplified
models, mathematically tractable and able to catch the essence of
complexity.

Suppose you have such a complete knowledge on the micro-
scopic details of certain system that you can write down its
Hamiltonian. Now the natural question that arises is the following
one: which are the mechanical conditions the system must fulfill in
order to guarantee that the statistical mechanics calculations would
predict, with an adequate degree of accuracy, the time averaged
quantities obtained from a laboratory experiment. And when trying
to answer such an apparently simple question, one discovers that
even the simplest systems can give place to very intricate behaviour.

Perhaps the simplest Hamiltonian model of interacting parti-
cles one can image is the so called Hamiltonian Mean Field (HMF)
model. Unlike most of the models we are used to deal with when
modeling complexity, in this case, not only the dynamical vari-
ables but also the interactions among them are extremely simple,
lacking any trait of randomness or frustration. The system con-
sists of a set of N interacting particles or rotators of unitary mass,
each one confined to move around its own unitary circle [1]. Each
particle is then mechanically described by an angle 6; and the
corresponding conjugate momentum p;. The dynamics of the sys-
tem is ruled by the following Hamiltonian:

facsiy . 1 1
H=5) 5+ @TZP —cos(li—6;)| =K +V. (1)
i .7

The first term is the kinetic energy associated with the motion of the
particles, while the second one corresponds to the interaction poten-
tial (the summation running over all different pairs of particles).
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There are a few features of the model that are worth mentioning
here. In the first place, it represents a fully connected system, in
which each particle interacts with all the others, independently of
the distance between them. As it is well known, this unrealistic
approach drastically simplifies the mathematical treatment of the
thermostatistics of many models, keeping track anyway of its qual-
itative thermodynamical behavior, at least at high enough
dimensionality. Second, the interaction is ferrormagnetic in nature,
in the sense that the potential energy of a pair of interacting parti-
cles [1-cos(6;-6))] tends to synchronize their movements. Finally,
this model can be considered a kinetic version of the XY mean field
magnetic model, which is without any doubt one of the most
studied statistical systems. In fact, we can associate with each
particle a two-dimensional local magnetization vector 71; = (cos 6;
; sin 6;) and correspondingly a global order parameter:

M = %Z?ﬁ.; : )

T

The thermodynamics of this model can be easily solved in the
canonical ensemble [1], and this calculation predicts the existence
of a continuous phase transition at T, = 1/2 between a high temper-
ature disordered phase (characterized by M = 0), where rotators
uniformly distribute over the circle, and a low temperature ordered
phase (M # 0), where rotators tend to synchronize their movements.

Most of the magnetic models in statistical mechanics do not
take into account the kinetic energy. This is mainly because of the
well established fact that in any measure based statistical theory
(microcanonical, canonical or grandcanonical) its contribution to
thermodynamical quantities is straightforward (that of a simple
ideal gas). However, the inclusion of this term in (1) provides a
proper deterministic microscopic dynamics. That is, instead of
putting in by hand an external dynamics that would force the
system to visit phase space according, for instance, to the usual
Boltzmann—Gibbs probability distribution, we can now investigate
the true dynamics by simply integrating Newtonian equations

0;= pi

pi =M, cos ;- Mysin 6, for 1 <i<N (3)
In doing so, one discovers that, despite its apparent simplicity, this
model displays a surprisingly rich variety of complex dynamical
behaviour[2].

Let us assume that the system is in thermodynamical equilibrium
with a thermal bath at temperature T. Then, through the canonical
ensemble calculation, we can obtain the mean energy per particle
U/N = (H/N ) by simply assuming, as we learn in any course on
Thermostatistics, that the system visits microscopic configurations
according to the Boltzmann—Gibbs measure. Alternatively, we may
consider a completely isolated system and prepare it initially with a
given energy per particle. If we measure the time average of twice the
mean kinetic energy per particle 2K /N along a trajectory, then one
would expect this last quantity to coincide with the temperature T
of the original thermal bath (after suitable transients). This ergodic
assumption is the master key of the thermostatistics method applied
to systems in true equilibrium. But unfortunately complexity seems
to occur far away from equilibrium.

There are plenty of physical systems which stay in macroscopic
almost stationary states (then, presumably predictable ones) but
where the canonical recipe fails. For instance, a window glass or a
living cell. Our simple HMF is an excellent prototype for discussing
these fascinating questions mainly because, as we will describe in
short, the canonical prescription seems to be insuffi- cient to
describe its long time behavior. In particular, the HMF is very sen-
sitive to its initial preparation, specially just below the critical point.
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A Fig. 1: Normalized two-time auto-correlation function of
the state variable (6;p) vs.time, for a value of the total
energy (subcritical) and for initial conditions that guarantee
that the system will get trapped into a quasi stationary
trajectory. Data correspond to averages over 200 of such
trajectories.The waiting times are t, =8 x 4", withn=0; ...; 6.
The dependence of C on both times is evident.

Depending on the initial conditions, the system may become
stacked into non-equilibrium long-standing quasi-stationary tra-
jectories. Along these quasi—stationary solutions, whose lifetimes
diverge in the limit N — oo, the time average of any thermodynam-
ical quantity does not coincide with the value predicted by the
canonical thermostatistics calculations. The analysis of this complex
phenomenology had been the subject of extensive research, includ-
ing a certain degree of sane controversy [2]. Actually, it presents the
kind of drastic slowing down observed in disordered systems, as it
happens, for instance, in spin glasses after a sudden quenching into
the low temperature phase. Furthermore, the caloric curve (the
relationship between the internal energy of the system and its tem-
perature), obtained by integrating the equations of motion of the
isolated system, strongly disagrees, in the subcritical region, with
that expected in the canonical ensemble. Interestingly, this anom-
alous caloric curve closely resembles the one observed in
multifragmentation of clusters of ions or atomic nuclei, where
regions with negative specific heat appear. Recently we have shown
that this anomalous behavior can be understood in terms of the
topology of the potential energy function: the system can not
attain true equilibrium because it gets trapped into a sequence of
critical points of V/N [3], as also verified in many glassy models.

A very simple way of characterizing the relaxation dynamics of
a complex system is through the analysis of the two-time auto-cor-
relation function C(¢, t'), which can exhibit history-dependent
features, usually referred to as aging. For systems that have attained
true thermodynamical equilibrium, memory effects disappear
and only time differences make physical sense. Under these condi-
tions, one expects that C(¢, ') = C(t - ). However, for systems
exhibiting aging, a much more complex dynamical behavior is
observed. (see for instance [4]). Inspired by the strong analogy
between the quasistationary trajectories already described and the
out of equilibrium states observed in glassy systems, we decided to
analyze the behavior of the two-time auto-correlation function of
the HMF model [5]. The state of the system in phase space is
completely characterized by giving the state vector = (6, p). Then,
the crude two—time auto-correlation function is

Cot + tw, t) =(X (t+ 1) - X (), (4)
where (...) stands for average over several realizations of the
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exponential fitting. Inset: Ing-linear representation of the
same data, with g = 2.35. Linearity indicates g-exponential
behavior.

dynamics. Afterwards, the auto-correlation function is suitable
centered and normalized to remain within the interval [-1, 1].

As we have previously mentioned, because we are dealing with
a well defined Hamiltonian system, it is possible to analyze its
proper microscopic dynamics. But macroscopic systems always
involve such a huge number of interacting particles that the
analytical integration of the equations of motion of all the con-
stituents is out of possibility. Then we must be able to integrate
their equations of motion with the help of computers (that is
what we normally call a numerical simulation). Fortunately, for
the system we are interested in, the numerical integration of the
coupled equations of motion is a very simple task, which can be
carried out even on a modern personal computer, due to its
mean-field character. In the cases presented here, the system was
always prepared in a “water bag” initial condition, that is, all the
angles were set to zero while the momenta were randomly chosen
from a uniform distribution with zero mean and such that the
system has total energy U. Since for these initial configurations,
the total energy is purely kinetic, we emulated the most drastic
cooling down compatible with the chosen fixed energy.

In Fig. 1 we plot the normalized two-time autocorrelation
function C(t + ty, tw) , for U/N = 0.69, N = 1000 and different
waiting times (increasing from bottom to top). The value of the
specific energy, together with the water bag initial condition, guar-
antees that, typically, the system will get trapped into a
quasi-stationary trajectory as desired. In particular, for the values
of U and N chosen, the discrepancy between canonical predic-
tion and microcanonical simulations is the most pronounced one.
We clearly note history dependence: for a given fixed t,, the
system remains in a quasi—equilibrium regime with temporal
translational invariance up to a time of order t,. Thereafter, the
auto-correlation function presents a slow algebraic decay and a
strong dependence on both times. Furthermore, the longer the
waiting time f,,, the slower the decay of the correlation.

It is a well established fact that, despite its verified ubiquity in
nature, a careful analysis of the aging phenomenology can give valu-
able information about the microscopic mechanisms involved in
the slowing down of the dynamics. In particular, since a general
microscopic theory for aging is still lacking, scaling properties can
offer a qualitative description of the microscopic phenomenology.
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Fortunately, a large body of evidence suggests the existence of only
a few dynamical universality classes associated with the out-of-
equilibrium relaxation of a model, as occurs, for instance, in coars-
ening dynamics or critical phenomena, from which one can extract,
by analogy, valuable conclusions. Following these ideas we have
looked for the functional dependence of C(# + #,,, t,,) on both times,
t,, and t, by trying different data collapses. In Fig. 2 we present the
best data collapse obtained for the results of the three largest wait-
ing times displayed in Fig. 1. The resulting scaling law shows that:

C(t + ty, tw) = f (/) (5)

for the whole range of values of #/t,, considered. Note that, for
t < t,, it holds that f (#/t))) ~ (#/t})*. Surprisingly, this kind of
scaling behavior is not usual in ordered systems, like the one here
studied. Instead, this is the same kind of scaling observed in real
spin glasses, which are characterized by the existence of high
degrees of randomness and frustration [4]. The solid line corre-
sponds to the best fit of the data with the g-exponential function.
This function naturally arises within the generalized thermosta-
tistics introduced by Tsallis [6]. One sees that g =1 + 1/4,
yielding g = 2.35. Notice that the g-exponential allows to fit the
whole simulated time span, concluding that:

C(t + ty, t) o< expy (-/th) (6)

This affirmation is corroborated by the plot in the inset of Fig. 2,
where the same data of the main figure are represented as In,[C(¢
+ t, tw)] vs. t/t}, yielding an almost perfect linear behavior. It is
worth mentioning that similar fittings were obtained for other sys-
tem sizes. Later on, these simulations were remade by Pluchino,
Rapisarda and Latora [7] who verified that the sub-aging regime
observed (< 1) is mainly due to the contribution of the momen-
ta. Instead, the contribution of the angles to the correlation
function displays the so called simple aging regime C(t, ') ~ t/t,,,
which can be easily understood in terms of the angular coordinates.

Finally, in Fig. 3, we present a further connection between
dynamical anomalies and generalized Tsallis thermostatistics. This
plot, obtained from [8], presents the probability distribution
function (PDF) of the angular position, for a system of N = 1000
rotators, initially prepared in the same initial conditions used for
analyzing aging, and at different times. It has been reported, some
years ago, that, in the quasi-stationary regime, the angles evolve
super-diffusively [9] (see also inset of Fig. 3, where the squared
deviation is plotted as a function of time). Additional information
is obtained looking not only at the squared deviation but at the
whole distribution of angles. Curiously, after the meta-equilibrium
regime settles, the PDFs can be well described by g-Gaussian
shapes. The value of parameter g increases with time reaching a
steady value g = 1.5[8]. The ultimate relationship between this
value of q and that obtained previously from the aging curves
remains an open question that deserves further analysis [10].

In conclusion, we have discussed two relaxational features
(aging and spreading of angles) of the HME a paradigm of long-
range couplings. Along the quasistationary solutions, both
features present traits of generalized exponential behavior. These
traits may be a reflection of the complex structure of the phase
space regions where quasi-stationary states live. If that were the
case, then we would expect that the new generalized thermostatis-
tics introduced by C. Tsallis in 1988 [6], inspired in multifractal
geometries, could offer a novel measure-based theory for predict-
ing the mean values of a physical system when confined in
quasi—stationary long living states. Despite the proper complexity
of this enterprise, the manageability of the HMF model invites
further and deeper investigations along these lines.
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uring the last few decades of the 20™ century the scientific
Dcommunity has recognized that in many situations (and
against everyday intuition) noise or fluctuations can trigger new
phenomena or new forms of order, like in noise induced phase
transitions, noise induced transport [1], stochastic resonance (2],
noise sustained patterns, to name just a few examples. However, in
almost all the studies of such noise induced phenomena it was
assumed that the noise source had a Gaussian distribution, either
white (memoryless) or colored (that is, with “memory”). This was
mainly due to the difficulties in handling non Gaussian noises and
to the possibility of obtaining some analytical results when working
with Gaussian noises. In addition to the intrinsic interest in the
study of non Gaussian noises, there has been some experimental
evidence, particularly in sensory and biological systems, indicating
that at least in some cases the noise source could be non Gaussian.
This article is a brief review on recent studies about some of
those noise induced phenomena when submitted to a colored (or
time correlated) and non Gaussian noise source. The source of
noise used in those works was one generated by a g-distribution
arising within a nonextensive statistical physics framework [3]. In
all the systems and phenomena analyzed, it was found that the
system’s response was strongly affected by a departure of the noise
source from the Gaussian behavior, showing a shift of transition
lines, an enhancement and/or marked broadening of the systems
response. That is, in most of the cases, the value of the parameter
q optimizing the system’s response resulted q # 1 (with g =1
corresponding to a Gaussian distribution). Clearly, this result
would be highly relevant for many technological applications, as
well as for some situations of biological interest.

Non gaussian noise

In order to introduce the form of the non Gaussian noise to be
used, we start considering the following form of a Langevin or
stochastic differential equation (that is, a differential equation
with random coefficients), with additive noise

x=f(x 1) + ), (1)

where 7)(#) is the stochastic or noise source. Usually, it is assumed that
such noise source corresponds to a Gaussian distributed variable,
having a correlation C(z - t') = <n(t)17( t’)>. If the noise is “white” (a
particular form of Markovian or memoryless process), we have
C(t-t') ~ 8(z - '), while for a typical Ornstein-Uhlenbeck process,
we have C(t - t') ~ exp[-(t - t')/1], with T the “correlation time”
However, motivated by previous work based on a nonexten-
sive thermostatistics distribution [3], it was assumed that the
noise 1(¢) was a non Gaussian and non Markovian process (that
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A Fig. 1: The stationary probability distribution function for
the non Gaussian distribution given by Eq. (3), for the value
7/D = 1.The solid line indicates the Gaussian case (g = 1); the
dashed line corresponds to a bounded distribution (g = 0.5);
while the dashed-dotted line corresponds to a wide
distribution (g = 2).

is with “memory”). It was shown that such non Gaussian and non
Markovian noise could be generated through the following
Langevin equation
. 1d 1
= —— + — 5
7 VA + 260 )

where () is a standard Gaussian white noise of zero mean and
correlation (&()E(t')) = DS(t-t"), while the potential

D T n

Vy(n) = m In[1 +5(Q‘1)7]-

As this article is not the appropriate place to refer to all the
properties of the process 7, we make reference to [4] for details.
However, it is instructive to show the stationary probability distri-
bution function, which is given by
TN

D2 )

where exp,(x) was defined in Box 1 (see the introduction by
C.Tsallis and J.P.Boon in this same issue), Z, being the normal-
ization constant. This distribution can be normalized only for g

< 3, its first moment is <n> = 0, while the second moment,

2\ _ st — 2D —
is finite only for q < 5/3. Also, 7,, the correlation time of the
process 1, diverges near q = 5/3 and can be approximated over
the whole range of values of g by 7,=27/(5 - 3q). When g — 1 the
limit of 1 being a Gaussian, Ornstein-Uhlenbeck colored noise, is
recovered, with noise intensity D and correlation time 7.

Furthermore, for g < 1, the probability distribution function has a

_2D_ .In order to visu-

7(1-q)
alize the form of the probability distribution as function of 1, in

Fig. 1 it is shown for different values of g.

cut-off and it is only defined for |n| <
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The process 1 was analyzed in [4], and an effective Markovian
approximation was obtained via a path integral procedure. Such
an approximation allows different (quasi) analytical results to be
obtained. Those results and their dependence on the different
parameters in the case of a double well potential, were compared
with extensive numerical simulations with excellent agreement.

We will now briefly review some of the results obtained when
studying a few of the noise induced phenomena indicate above.

Stochastic resonance
The phenomenon of stochastic resonance shows the counterintu-
itive role played by noise in nonlinear systems as it enhances the
response of a system subject to a weak external signal [2]. It was first
introduced by Benzi and coworkers to explain the periodicity of
Earth’s ice ages (see [2] and references therein). The study of
stochastic resonance has attracted considerable interest due to its
potential technological applications for optimizing the response in
nonlinear dynamical systems, as well as to its connection with some
biological mechanisms. A large number of the studies on stochas-
tic resonance have been done analyzing a paradigmatic bistable
one-dimensional double-well potential. In almost all descriptions
the transition rates between the two wells were estimated as the
inverse of the Kramers’ time (or the typical mean passage time
between the wells), which was evaluated using standard techniques.
In almost all cases, noises were assumed to be Gaussian.

Consider the problem described by Egs. (1) and (2), where
flz,t) = — dU(ed) _ _9Uu(®) o g(t), the external signal is

dx dx

S(t) ~ A cos(wr) and Uy(x) is a double well potential. This prob-
lem corresponds (for A = 0) to the case of diffusion inside the
potential Uy(x), induced by the colored non Gaussian noise 1.
We will not describe here the details of the effective Markovian
Fokker-Planck equation (see [4, 5]); but it is worth indicating that
such an approximation allowed us to obtain the probability
distribution function of the process 7, and to derive expressions
for the Kramers time. Another useful approximation, the so-called
two-state approach [2], was also exploited in order to obtain ana-
lytical expressions for the power spectral density and the
signal-to-noise ratio.

Figure 2 shows some of the main results. In the upper part is
depicted the theoretical results: on the left hand part for R — the
signal-to-noise ratio — versus D, for a fixed value of the time
correlation 7and various q. It is apparent that the general trend is
that the maximum of the signal-to-noise curve increases when the
system departs from the Gaussian behavior (g < 1). The right
hand part again shows R vs D, but for a fixed value of g and
several values of 7. The general trend agrees with previous results
for colored Gaussian noises [2]: an increase of the correlation time
induces the maximum of the signal-to-noise ratio decrease as well
to shift towards larger values of the noise’s intensity. The latter fact
is a consequence of the suppression of the switching rate for
increasing 7. Both qualitative trends were confirmed by Monte
Carlo simulations of Egs. (1) and (2). The lower part of Fig. 2
show the simulation results. The left hand side corresponds to
the same situation and parameters indicated in the upper left part.
In addition to the increase of the maximum of the signal-to-
noise ratio curve for values of g < 1, it is also seen to be an aspect
that is not well reproduced or predicted by the effective Markov-
ian approximation: the maximum of the signal-to-noise ratio
curve flattens for lower values of ¢, indicating that the system,
when departing from the Gaussian behavior, does not require a
fine tuning of the noise intensity in order to maximize its response
to a weak external signal. On the right hand side, simulation
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results for the same situation and parameters indicated in the
upper right part are also shown.

The numerical and theoretical results can be summarized as
follows: (a) for a fixed value of 7, the maximum value of the
signal-to-noise ratio increases with decreasing g; (b) for a given
value of ¢, the optimal noise intensity (that one maximizing the
signal-to-noise ratio) decreases with g and its value is approxi-
mately independent of 7; (c) for a fixed value of the noise
intensity, the optimal value of ¢ is independent of 7and in gener-
al it turns out that g, # 1.

Using a simple experimental setup, in [6] the stochastic reso-
nance phenomenon was analyzed but using a non Gaussian
noise source built up to exploit the form of noise introduced
above, for the particular case of non Gaussian white noise. Those
results confirmed most of the predictions indicated above.

Brownian motors

Brownian motors or “ratchets” — where the breaking of spatial
and/or temporal symmetry, induces directional transport in
systems out of equilibrium — is another noise induced phenome-
non that attracts the attention of an increasing number of
researchers due to both its potential technological applications
and its biological interest [1]. The transport properties of a typi-
cal Brownian motor are usually studied analyzing the following
general stochastic differential or Langevin equation

FEATURES

where m is the mass of the particle, ythe friction constant, V(x)
the (sawtooth-like) ratchet potential, F is a constant “load” force,
and &(t) the thermal noise satisfying (E(£)E(t')) = 2yT&(t - ). Final-
ly, n(¢) is the time correlated forcing (with zero mean) that keeps
the system out of thermal equilibrium allowing the motion to be
rectified. For this type of ratchet model several different kinds of
time correlated forcing have been considered in the literature [1].

The effect of the class of the non Gaussian noise introduced
before on the transport properties of a typical Brownian motor,
was analyzed in [7], with the dynamics of 17(#) described by the
Langevin equation (2). As discussed before, for 1 < g < 3, the prob-
ability distribution decays as a power law, that is slower than a
Gaussian. Hence, keeping D (the noise intensity) constant, the width
or dispersion of the distribution increases with g, meaning that, the
higher g, the stronger the “kicks” that the particle will receive when
compared with the Gaussian Ornstein-Uhlenbeck process.

By setting m = 0 and y= 1, the overdamped regime was initial-
ly analyzed. The main objective of the studies was to analyze the
dependence of the mean current ( ]= <%>) and the efficiency (€)
on the different parameters, in particular, their dependence on g.
For the efficiency, defined as the ratio of the work (per unit time)
done by the particle “against” the load force F to the mean power
injected into the system through the external forcing 1, a closed
expression using an adiabatic approximation was obtained [7].

Figure 3, on the left hand side, shows typical analytical results -

d’ dx . . I
m —}zc =-y—-V'(x) - F+ &(t) + n(1), (4) obtained through the adiabatic Approximation - for J and € as
dt dt . . . .
functions of ¢, together with results of numerical simulations.
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shown in the upper part: on the left hand side for a correlation time 7= 0.1 and different values of the parameter g (that indicates
a departure from the Gaussian —g = 1- behavior): (from top to bottom) g = 0.25,0.75, 1.0, 1.25, while on the right hand side for
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A region of parameters similar to the ones used in previous
studies was chosen, but considering a non-zero load force, leading
to a non-vanishing efficiency. As can be seen, although there is not
quantitative agreement between theory and simulations, the used
adiabatic approximation predicts qualitatively very well the
behaviour of J (and €) as q is varied. As shown in the figure, the
current grows monotonously with g (at least for g < 5/3) while
there is an optimal value of g (> 1) giving the maximum efficien-
cy. This fact could be interpreted as follows: when g is increased,
the width of the Pg(n) distribution grows and high values of the
non Gaussian noise become more frequent, leading to an
improvement of J. Although the mean value of ] increases monot-
onously with g, the width of Pg(n) also grows, leading to an
enhancement of the fluctuations around this mean value. This is
the origin of the efficiency’s decay occurring for high values of g:
in this region, in spite of having a large (positive) mean value of
the current for a given realization of the process, the transport of
the particle towards the desired direction is far from being
assured. Hence, the results indicated clearly show that the trans-
port mechanism becomes more efficient when the stochastic
forcing has a non Gaussian distribution with g > 1.

Regarding the situation when inertia effects are relevant (that is
m # 0), taking into account the results discussed above it is rea-
sonable to expect that non Gaussian noises might improve the
capability of mass separation in ratchets. Previous work has
analyzed ratchets with an Ornstein-Uhlenbeck noise as external
forcing (it is worth emphasising that it corresponds to g = 1 in the
present case), and has studied the dynamics for different values of
the correlation time of the forcing, finding that there was a region
of parameters where mass separation occurs. This means that the
direction of the current is found to be mass—dependent: the
“heavy” species moves in one direction while the “light” one does
so in the opposite sense. We have analyzed the same system, but
considering the case of non Gaussian forcing, and focusing on the
region of parameters where (for g = 1) separation of masses was
found. The main result was that the separation of masses indeed
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occurs, that happens in the absence of a load force, and that it is
enhanced when a non—-Gaussian noise with g > 1 is considered. On
the right hand side of Fig. 3, part (a) the current J as function of g
for m; = 0.5 and m, = 1.5 is shown. It is apparent that there is an
optimum value of g that maximizes the difference of currents. This
value, which is close to g = 1.25, is indicated with a vertical double
arrow. Another double arrow indicates the separation of masses
occurring for g = 1 (Gaussian Ornstein-Uhlenbeck forcing). It
was observed that, when the value of the load force is varied, the
difference between the curves remain approximately constant but
both are shifted together to positive or negative values (depending
on the sign of the variation of the loading). By controlling this
parameter it is possible to achieve the situation shown in part (b),
where, for the value of g at which the difference of currents is
maximal, the heavy “species” remains static on average (has J = 0),
while the light one has J > 0. In part (c) for the optimal g, the two
species move in opposite directions with equal absolute velocity.

Resonant gated trapping

As indicated before, stochastic resonance has been found to play a
relevant role in several biology problems. In particular, there are
experiments on the measurement of the current through voltage-
sensitive ion channels in cell membranes. These channels switch
(randomly) between open and closed states, thus controlling the
ion current. This and other related phenomena have stimulated
several theoretical studies of the problem of ionic transport
through biological cell membranes, using different approaches, as
well as different ways of characterizing stochastic resonance in such
systems. A toy model, sketching the behavior of an ion channel, was
studied in [8]. Among other factors, the ion transport depends on
the membrane electric potential (which plays the role of the barri-
er height) and can be stimulated by both dc and ac external fields.
This included the simultaneous action of a deterministic and a
stochastic external field on the trapping rate of a gated imperfect
trap. The main result was that even such a simple (toy) model of a
gated trapping process shows a stochastic resonance-like behavior.
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The study was based on the so called stochastic model for reac-
tions, generalized in order to include the internal trap’s dynamics.
The dynamical process consists in the opening or closing of the
traps according to an external field that has two contributions, one
periodic with a small amplitude, and another stochastic whose
intensity is (as usual) the tuning parameter. The absorption
contribution is modeled as ~ -¢(£) 6(x)p(x, 1); with p the density
of the not yet trapped particles, and y(t) = y*0[ B sin(wt) + 1 - 0],
where 6(x) — the Heaviside function — determines when the trap
is open or closed: if the signal is B sin(®t) + 1 = 7. the trap
opens, otherwise it is closed. The interesting case is when 1. > B,
that is: without noise the trap is always closed. When the trap is
open the particles are trapped with a probability per unit time ¥*
(i.e. the open trap is “imperfect”). Finally, the colored non Gauss-
ian noise given by Eq. (2) was used for 1.

The stochastic resonance-like phenomenon was quantified by
computing the amplitude of the oscillating part of the absorption
current, indicated by AJ(#). The resulting qualitative behavior was
as follows: for small noise intensities the trapping current was low
(as 1. > B), hence AJ was small too, while for a large noise intensi-
ty the deterministic (harmonic) part of the signal became
irrelevant and AJ was again small. Hence, there was a maximum at
some intermediate value of the noise. When compared against the
white noise case, an increase in the system response was apparent
together with a reduction in the need for tuning the noise, simi-
larly to what was found for the “normal” stochastic resonance: the
bounded character of the probability distribution function for
q < 1 contributed positively to the rate of overcoming the thresh-
old 1. and such a rate remained of the same order within a larger
range of values than for the case of 1 being a white noise [5].

The dependence of the maximum of AJ(#) on the parameter g
was also analyzed, and the existence of another resonant-like
maximum as a function of g was observed, implying that it is pos-
sible to find a region of values of g where the maximum of AJ
reaches optimal values (corresponding to a non Gaussian and
bounded probability distribution function), yielding the largest
system response. That is, a double stochastic resonance effect exists
as a function of both: the noise intensity and q.

Noise induced transition

A system, called the genetic model, that when submitted to a
Gaussian white noise shows a noise induced transition, was also
studied. In previous related works it was shown that, when the
noise is an Ornstein-Uhlenbeck one, a re-entrance effect arose
(from a disordered state to an ordered one, and finally again to a
disordered state) as the noise correlation time 7 was varied from
0 to co. The same system was studied in [9], but when it was
submitted to the non Gaussian noise indicated above. The main
result showed the persistence of the indicated re-entrance effect,
together with a strong shift in the transition line, as g departed
from g = 1. The transition was anticipated for g > 1, while it was
retarded for q < 1. A conjecture about a possible re-entrance effect
with g was shown to be false.

Final comments

The previously indicated results clearly show that the use of non
Gaussian noises in many noise induced phenomena could pro-
duce significant changes in the system’s response when compared
to the Gaussian case. Moreover, in all cases, it was found that the
system’s response is enhanced or altered in a relevant way, and this
occurs for values of g indicating a departure from Gaussian
behavior, that is: the optimum response happens for g # 1: Clearly,
the study of the variation in the response of other related noise
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induced phenomena when subject to such a kind of non Gaussian
noise will be of great interest.

An extremely relevant point is related to some recent work [10]
where the algebra and calculus associated with the nonextensive
statistical mechanics has been studied. It is expected that the use
of such a formalism could help to directly study Eq. (1), without
the need to resort to Eq. (2), and also to build up a nonextensive
path integral framework for this kind of stochastic process.

To conclude, it is worth commenting on a relevant question:
how could it be possible to obtain such a form of noise from, it
may be said, first principles? It is well known that in dynamical sys-
tems with several degrees of freedom evolving with two well
separated time scales, Gaussian noises (white or colored) could be
obtained through an adequate adiabatic elimination of the fast
variables, and assuming some (6 or exponential) correlation
properties. It can be conjectured that the form of noise used above
could result from the existence of a whole hierarchy of time scales
and, associated with it, to an adequate hierarchical adiabatic elim-
ination of the faster variables. However, the proof or rejection of
this conjecture requires some specific work.
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hen studying phase transitions and critical phenomena one

usually adopts the canonical ensemble and exploits numeri-
cal Monte Carlo methods to predict the equilibrium behaviour.
However it is also very interesting to follow the microcanonical
ensemble and use molecular dynamics to investigate how the sys-
tem reaches equilibrium. This is particularly true for finite systems
and long-range interaction models since, in this case, extensivity
and ergodicity are not assured and deviations from standard ther-
modynamics are usually found. On the other hand recently many
data are available for phase transitions in finite systems, as for exam-
ple in the case of nuclear multifragmentation or atomic clusters,
and there is also much interest in studying plasma and self-gravi-
tating systems [1]. Moreover the generalized thermodynamics
introduced by Constantino Tsallis [2] to explain the complex
dynamics of nonextensive and non-ergodic systems provides fur-
ther stimuli and a challenging test in the same direction. In this
context an apparently simple but instructive model of fully-coupled
rotators, the so-called Hamiltonian Mean Field (HMF) model, has
been intensively studied in the last decade [3-10] together with a
generalized version with variable interaction range [11]. Such
Hamiltonians have revealed a very complex out-of-equilibrium
dynamics which can be considered paradigmatic for nonextensive
systems [4,12]. We will illustrate in this short paper the interesting
anomalous pre-equilibrium dynamics of the HMF model, focus-
ing on the novel connections to the generalized nonextensive
thermostatistics [5] and the recent links to glassy systems [10].

The HMF model: a paradigmatic example for long-
range N-body classical systems
The HMF model has an Hamiltonian H = K+V, with the kinetic energy

N prl . _ L N B B
K= ZI: > and the potential one ¥ B ‘é [1 cos(& -9, )] .
In the latter § is the orientation angle of the i-th spin s; =(sin 3,
cos ¢ ) and p; is the corresponding conjugate coordinate, i.e. the
angular momentum or the velocity, since the N spins have unitary
mass. All the spins (rotators) interact with each other and in this
sense the system is a mean field model. The average kinetic term
K provides information on the temperature of the system, which
can be calculated by the relation T=2K/N. On the other hand, the
potential part V is divided by the total number of spins in order
to consider the thermodynamic limit. At equilibrium this Hamil-
tonian has a second order phase transition: increasing the energy
density U=H/N beyond a critical point Uc=0.75, characterized
by a critical temperature T¢=0.5, the system then passes from a
ferromagnetic (condensed) phase to a disordered (homogeneous)
one [3]. In correspondence, the order parameter given
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by the modulus of the total magnetization, i.e. M=

, goes

from 1 to zero. Using standard procedures one can easily obtain
the canonical equilibrium caloric curve, given by the relation
U =T/2 + (1- M?*)/2 . On the other hand, by numerically inte-
grating at fixed energy the equations of motion derived from the
Hamiltonian, and starting the system close to equilibrium, the
simulations reproduce well the theoretical prediction [3].
However, the situation is quite different when the system is
started with strong out-of-equilibrium initial conditions, as for
example giving to the system all the available energy as kinetic
one. One way to do this is by considering all the angles 9 = 0, thus
obtaining an initial magnetization My=1 and V=0, and distribut-
ing all the velocities in an uniform interval compatible with the
chosen energy density —water bag distribution. Adopting such ini-
tial conditions, for an energy density interval below the critical
point, i.e. 0.5 < U < U., the microcanonical dynamics does have
difficulties in reaching Boltzmann-Gibbs equilibrium: in fact, after
a sudden relaxation from an high temperature state, the system
remains trapped in metastable long-living Quasi-Stationary States
(QSS) whose lifetime diverges with the system size N [4]. Along
these metastable states, the so- called ‘QSS regime’, the system is
characterized by a temperature lower then the equilibrium one,
until, for finite sizes, it finally relaxes towards the canonical pre-
diction T.q. But, if the infinite size limit is taken before the
infinite time limit, the system never relaxes to Boltzmann-Gibbs
equilibrium and remains trapped forever in the QSS plateau at the
limiting temperature Taqss.
The QSS regime is characterized by many dynamical anomalies,
such as superdiffusion and Lévy walks, negative specific heat,
non-Gaussian velocity distributions, vanishing Lyapunov expo-
nents, hierarchical fractal-like structures in Boltzmann p-space,
slow-decaying correlations, aging and glassy features [3-11].
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A Fig. 1: Time evolution of the HMF temperature for the
energy density U =0.69,N = 1000 and several initial
conditions with different magnetization. After a very quick
cooling, the system remains trapped into metastable long-
living Quasi-Stationary States (QSS) at a temperature smaller
than the equilibrium one.Then, after a lifetime that diverges
with the size, the noise induced by the finite number of spins
drives the system towards a complete relaxation to the
equilibrium value. Although from a macroscopic point of
view the various metastable states seem similar, they
actually have different microscopic features and
correlations which depend in a sensitive way on the initial
magnetization.
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These anomalies strongly depend on the initial magnetization
M. In Fig.1 we show the QSS temperature plateaux for U=0.69 (a
value for which the anomalies are more evident), N=1000 and for
different out-of-equilibrium initial conditions with 0 < M, < 1.
The latter are realized by spreading the initial angles & over wider
and wider portions of the unit circle and using an uniform dis-
tribution for the momenta. The system starts from an initial tem-
perature value that rapidly decreases according to the initial mag-
netization My , until it reaches the metastable QSS. Only for
M=0, the system already starts from the limiting plateau corre-
sponding, according to the caloric curve, to a temperature
Tqss=0.38. In all cases, after a long lifetime, the system relaxes to
the equilibrium temperature reported as dashed line. Although
the macroscopic metastable states are present for all the initial
conditions, from a microscopic point of view the system behaves
in a very different way. This is nicely illustrated in Fig.2 where
we report, for the energy density U=0.69 and N=10000, the ini-
tial time evolution of the y—space for four different magnetiza-
tions. This figure illustrates how structures emerge and persist in
the QSS region, but also their dependence on the initial condi-
tions. Fractal-like structures characterize the y—space for My=1
[4]. On the other hand, these features seem to persist, although
smoothed, by decreasing My until, for My=0, the microscopic
configuration of the system remains always homogeneous. For
this reason the latter seems to be the only case where an inter-
pretation of metastability in terms of Vlasov equation [7] could
likely be applicable. At variance, Tsallis statistics appears to be the
best candidate for all the other cases.

Connections to Tsallis thermostatistics

In order to explore the characteristic microscopic dynamics orig-
inated by the different initial conditions and its connection with
Tsallis thermostatistics, one can focus on the velocity autocorre-

N
lation function C(t) = z p,(1)p,(0)/ N [5]. The latter is plotted

i=l
in Fig.3(a) for U=0.69, N=1000 and several initial magnetiza-
tions My. The initial fast relaxation illustrated in Fig.1 has been
truncated to focus only on the properties of the metastable states
and an ensemble average over 500 different realizations was per-
formed. One can see immediately that for Mo = 0.4 the correla-
tion functions are very similar, while the decay is faster for
M,=0.2 and even more for My=0 [5,10]. These relaxation decays
are extremely well fitted by Tsallis” g-exponential functions de-

I
fined as e,(z)=[1+(1-¢)z]""", where z = - t/1, T being a

characteristic time which indicates the bending of the curve,
while g is the entropic index [2]. Actually, nonextensive thermo-
statistics introduced by Tsallis has been shown to be particularly
adequate to generalize the usual Boltzmann-Gibbs (BG) formal-
ism in describing the out-of-equilibrium dynamics of systems
that live in fractal regions of phase space [4]. In this new context,
the entropic index q is able to quantify the degree of nonexten-
sivity and non-ergodicity of the dynamics. For q=1 the standard
BG statistics is recovered. In Fig.3(a), by means of g-exponential
fits, we illustrate how one can characterize in a quantitative way
the dynamical correlations induced by the different initial con-
ditions: in fact we get a value of q = 1.5 for My = 0.4, while
q=1.2and g = 1.1 for My = 0.2 and for M, = 0 respectively. Thus
for My > 0.4 correlations exhibit a long range nature and a slow
long tailed decay. On the other hand they diminish progressive-
ly for initial magnetizations smaller than M, = 0.4, to become
almost exponential for My = 0. Such a result clearly indicates a
different microscopic nature of the QSS in the M, = 0 case, which
is probably linked to the fact that the latter is a stationary
solution of the Vlasov equation [7]. On the other hand, Tsallis’
generalized formalism is able to characterize the dynamical

M =1 M0=0.8

M,=0.4

M,=0

— - ]

< Fig. 2: Initial time
evolution of the HVIF
model y-space at four
times (t = 0,25,50,500)
and for different initial
magnetizations. The

energy density is U =

0.69 and the number
of spins is N = 10000.
The initial fast particles
are plotted in red to
illustrate the mixing
properties of the

dynamics in the
various cases. Fractal-
like structures are
formed and persist in
the QSS regime for Mo
> 0.0n the other hand,

when the initial

magnetization is Mo =
0 the system remains
ina homogeneous
configuration.In this
case microscopic
correlations are almost

500

absent and no
structure is evident.
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exponential curves.The entropic index q used is also
reported. (b) Time evolution of the variance of the angular
displacement for U = 0.69, N = 2000 and different initial
conditions. After an initial ballistic motion, the slope
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the plots shown, the numerical simulations are averaged
over many realizations.
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anomalies observed not only for My = 1 but also for any finite
initial magnetization.

Actually there are several other results pointing in this direc-
tion and in favour of Tsallis generalized statistics [4-6,12]. In the
following, we want to discuss an interesting conjecture that gives
further support to this interpretation. It concerns a link between
the value of the entropic index g which characterize the velocity
autocorrelation decay and the exponent of the anomalous diffu-
sion y [5].

In order to observe the diffusion process one can consider the
mean square displacement of phases 6°(t) defined as o*(t) =
<|9,-( t)- 91-(0)|2> , where the brackets represent an average over all
the N rotators. The mean square displacement typically scales as
0’ cc t7. In general the diffusion is normal when y = 1, corre-
sponding to the Einstein's law for Brownian motion, and
ballistic (free particles) for y = 2. Otherwise, the diffusion is
anomalous and in particular one has superdiffusion if y> 1. In
Fig.3(b) we plot the mean square displacement versus time for
U=0.69, N=2000 and different initial conditions. One can see
that, after the ballistic regime of the initial fast relaxation, in the
QSS regime and afterwards the system clearly shows superdiffu-
sion for 0.4 < M, < 1 and the exponent yhas values in the range
1.4-1.5. On the other hand, in the case Mo = 0 we get y= 1.2.
Actually by increasing the size of the system, diffusion tends to
become normal (Y= 1 for N = 10000). Again this case seems to
be quite peculiar and microscopically very different from the
others studied, where anomalies are much more evident.

Superdiffusion observed in the slow QSS regime seems to be
linked with the q-exponential decay of the velocity correlations
through the ‘y-q conjecture’, based on a generalized nonlinear
Fokker-Planck equation that generates q-exponential space-
time distributions [5]. In this framework the entropic index gq
is related to the parameter y by the relationship y = 2/(3—q).
Since in diffusive processes space-time distributions are linked
to the respective velocity correlations by the well known Kubo
formula, one could investigate the y-q relation considering the
entropic index q characterizing the velocity correlation decay in
an anomalous diffusion scenario. In Fig.4 we illustrate the
robustness of this conjecture by varying not only the initial
conditions and the size of the system, but also the range of
interaction. These calculations were done by considering the
generalized o.-XY Hamiltonian, with the parameter o, which
modulates the range of the interaction, varying from 0 (HMF
model) to 1 [11]. By plotting the ratio y/ [2/(3—q)] as a function
of yfor various values of N, Mg and o at U=0.69, one can see
that the 9~q conjecture is confirmed within an error of £ 0.1.
This means that knowing the superdiffusion exponent one can
predict the entropic index of the velocity correlation decay and
viceversa.

The simulations here discussed add an important piece of
information to the puzzling scenario of the pre-equilibrium
dynamics of the HMF model and its generalizations, which
cannot be explained with the standard tools of the BG statistical
mechanics. Although these results do not provide a rigorous
proof of the applicability of Tsallis generalized statistics, they
strongly indicate that this formalism is at the moment the best
candidate for explaining the huge number of observed anom-
alies for a wide class of out-of-equilibrium initial conditions.

Links to glassy systems

The importance of the role of initial conditions in generating
anomalous dynamics, together with the discovery of aging and
dynamical frustration in the QSS regime [6,10], suggests also

europhysics news NOVEMBER/DECEMBER 2005



another non-ergodic description of the HMF dynamics comple-
mentary to the Tsallis’ one, i.e. the so-called weak ergodicity-
breaking scenario of glassy systems [13]. The latter occurs when
the phase space is a-priori not broken into mutually inaccessible
regions in which local equilibrium may be achieved, as in the
true ergodicity breaking case, but nevertheless the system can
remain trapped for very long times in some regions of the
complex energy landscape. It is widely accepted that the energy
landscape of a glassy system is extremely rough, with many local
minima corresponding to metastable configurations surrounded
by rather high energy barriers: one thus expects that these states
act as traps which get hold of the system during a certain time.
In the QSS regime of the HMF model, when the system starts
from Mo=1 initial conditions, such a mechanism is reproduced
by the existence of a hierarchical distribution of clusters which
compete among each other in trapping more and more particles
[10]. Such a phenomenon produces a sort of dynamical frustra-
tion that recalls the pictorial explanation of aging made by the
cage model for structural glasses [13] and thus could justify the
slow relaxation time observed in the velocity autocorrelation
function. Recently, the analogy between the HMF model and
glassy systems has been extended by introducing a new order pa-
rameter, to quantify the degree of freezing of the rotators due to the
dynamical frustration. The elementary polarization was defined as
the temporal average, integrated over an opportune time inter-

. . B O
val 7, of the successive positions of each spin <SJ.> =— [ sdr
T *

with i =1, 2, ...N, and ty being an initial transient time [10].
Then one can average the module of the elementary polariza-
tion over the N spin configurations, to obtain the polarization p
.

defined as p = %ZJ(E,) . In analogy with the behaviour of the
=l

Edwards Anderson order parameter in the Sherrington-Kirk-
patrick (SK) model of an infinite range spin-glass [13], in the
equilibrium regime of the HMF model the polarization p is equal
to the magnetization M. On the other hand, in the out-of-equi-
librium QSS regime, which plays here the role of the Spin-Glass
phase in the SK model, the emerging dynamical frustration
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A Fig. 4: For different system sizes and initial conditions,and
for several values of the parameter & which fixes the range
of the interaction of a generalized version of the HMF model
[11], the figure illustrates the ratio of the anomalous
diffusion exponent y divided by 2/(3-q) vsy.The entropic
index q is extracted from the relaxation of the correlation
function (see previous figure). This ratio is always one within
the errors of the calculations.

introduces an effective randomness in the interactions and
quenches the relative motion of the spin vectors. Thus p has a
non null value as in the equilibrium condensed phase, while mag-
netization, vanishes with the size N of the system and is zero in
the thermodynamic limit.

In Fig.5 we plot the behaviour of p and M versus U at equi-
librium (a) and vs N in the QSS regime (b), for U=0.69 and the
Mo=1 initial conditions. At equilibrium M and p assume the
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A Fig. 5: (a) The magnetization M and the polarization p are plotted vs the energy density for N=10000 at equilibrium: the two
order parameters are identical. (b) The same quantities plotted in (a) are here reported vs the size of the system, but in the
metastable QSS regime. In this case, increasing the size of the system, the polarization remains constant around a value p ~ 0.24
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same values for both the ferromagnetic and paramagnetic phase.
Instead, in the QSS regime magnetization correctly vanishes with
N while polarization remains constant at a value 0.24 +0.05.
This does strongly indicate that we can consider the QSS regime
as a sort of glassy phase for the HMF model. Again, it is impor-
tant to stress the role of the initial conditions in order to have
dynamical frustration and glassy behaviour. Actually, glassy
features are very sensitive to the initial kinetic explosion that
produces the sudden quenching and dynamical frustration. In
particular, reducing My from 1 to 0.95 the polarization effect
and the hierarchical clusters size distributions become much less
evident, until they completely disappear decreasing further M,
[10]. In this sense, the My=1 initial conditions seems to select a
special region of phase space where the system of rotators de-
scribed by the HMF Hamiltonian behaves as a glassy system. We
note in closing that this result gives also a further support to the
broken ergodicity interpretation of the QSS regime of Tsallis
themostatistics.

Conclusions

Summarizing the HMF model and its generalization, the o--XY
model, provide a perfect benchmark for studying complex
dynamics in Hamiltonian long-range systems. It is true that sev-
eral questions remain  glassy dynamics.
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Seismic time series is basically composed of the sequence of
occurrence time, spatial location and value of magnitude of each
earthquake. In other words, seismic moments (their logarithms
being values of magnitude) as amplitudes are defined at discrete
spacetime points. Seismicity is therefore a field-theoretic phenom-
enon. However, unlike a familiar one such as an electromagnetic
field, it is inherently probabilistic in both magnitude and locus in
spacetime. It is characterized by diverse phenomenology, accord-
ingly. Known classical examples are the Gutenberg-Richter law and
the Omori law. The former states that the frequency of earthquakes
with magnitude larger than M, N (> M), is related to M itself as log
N (> M) = A - bM, where A and b are constants and, in particular,
b = 1 empirically. Magnitude is related to the emitted energy, E, as
M ~ log E. The Omori law describes the temporal rate of after-
shocks following a main shock. The number of aftershocks between
tand t + dt, dN (t), after a main shock at t = 0, empirically decays
in time as (f + fo)*, where ) and p are constants with p varying
between 0.6 and 1.5 according to real seismic data. It is noticed that
both of them are power laws, i.e., they have no characteristic scales,
pronouncing complexity and criticality of the phenomenon.

Nonextensive statistics (Tsallis statistics or g-statistics) [1] has
been attracting continuous attention as a possible candidate the-
ory of describing statistical properties of a wide class of complex
systems. It is a generalization of Boltzmann-Gibbs equilibrium
statistical mechanics, and is concerned with nonequilibrium sta-
tionary states of complex systems. Since complex systems reside at
the edge of chaos in the language of dynamical systems,
ergodicity, which is a fundamental premise in Boltzmann-Gibbs
statistics, may be broken. That is, at the level of statistical mechan-
ics, long-time average and ensemble average of a physical quantity
do not coincide. Clearly, the concept of ergodicity does not apply
to seismicity because of the absence of the ensemble notion in its
nature.

Though the complete dynamical description of seismicity is
still out of reach, some models have been proposed in the litera-
ture to explain some features. Among others, the spring-block
model, the self-organized criticality model and mean-field
models such as the coherent noise model are frequently discussed
(the last one will be visited here later).

Criticality and nonergodicity of real seismicity may lead to the
question if some of its physical aspects can phenomenologically
be described by nonextensive statistics and related theoretical treat-
ments. The answer to this question turns out to be affirmative.
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Abe and Suzuki [2] have studied long-time statistics of the
spatial distance between two successive earthquakes by using two
sets of the data taken in Japan and California. They have found
that, over the whole ranges, both of the data are fitted extremely
well by the g-exponential distributions with 0 < q < 1. Here, the
g-exponential distributions are the maximum Tsallis entropy
distributions [1], where g is the index of the Tsallis entropy [1].
Then, they have further analyzed long-time statistics of the time
interval between two successive earthquakes, termed “calm time”
(or, interoccurrence time), and have ascertained [2] that, as the
spatial distance, the calm time also obeys the g-exponential dis-
tributions both in Japan and California with g > 1 over the whole
ranges. The g-exponential distribution has the form: ~ exp,(-Q),
where f3is a positive constant and Q is a positive random variable,
i.e., the distance or the time interval between two successive earth-
quakes, in the present case [see Box in the Editorial by J. P. Boon
and C. Tsallis for the definitions of the g-exponential function,
expy(x) and its inverse, the g-logarithmic function, In,(x)].

The g-exponential distribution with g > 1 is equivalent to the
so-called Zipf-Mandelbrot power-law distribution, which is
known to be derivable from several independent approaches
including the maximum Tsallis entropy principle. On the other
hand, the g-exponential distribution with 0 < g < 1 has a cutoff
at a finite value of the random variable under consideration.
Simultaneous derivation of both ¢ > 1 and 0 < g < 1 cases is
considered to be realized only by the maximum Tsallis entropy
principle. Another point of interest is that the sum of the g-indices
of the distributions of the spatial distance and the calm time in
real seismicity is found to be close to 2, both in Japan and Cali-
fornia. In nonextensive statistics, the theories with g(> 0) and
2 - q(> 0) are said to be dual to each other. Therefore, seismicity
exhibits “spatio-temporal duality”

Thus, nonextensive statistics well explains spatio-temporal
complexity of real seismicity in its long-time behavior. In the
short-time scale, however, the seismic data is nonstationary and
highly structured, in general. Such features are mainly due to af-
tershocks following main shocks. A time interval of the seismic
time series, in which the events obey the Omori law for after-
shocks, is referred to as “Omori regime”. Recently, Abe and Suzuki
have discovered [3] that nonstationarity of the time series of
aftershocks obeys a peculiar law for event-event correlation. The
event-event correlation function proposed in Ref.[3] is given by

(‘r':r—'—ru.. f-n.,-) B (!'rr+re » } (f-'u..-)
(r:r"! o? )]/2

Nty

C(n4 N, Nay) =

(1

In this equation, #, is the time when the nth shock after a given
main shock occurs. The averages and the variance are defined by
(tn) = (UM )X tusks (tutwr) = (UM )X, tskturk and
02 = (t3)~(tn)’, respectively. M is the number of the successive
events taken inside the Omori regime under consideration. Com-
paring Eq. (1) with the ordinary autocorrelation function, one
sees that the basic random variable is t,, which is the occurrence
time of the nth event. In other words, n plays a role of a certain
time parameter of the discrete time series. Such a time parame-
ter is called “natural time”, which has been introduced by Varot-
sos and his collaborators [4]. Accordingly, n,, in Eq. (1) is termed
“natural waiting time”.

A striking property reported in Ref.[3] is that event-event cor-
relation of aftershocks exhibits the aging phenomenon with respect
to the natural waiting time (this phenomenon will be explained
below). In addition, it also obeys a definite scaling property. The
correlation function in Eq. (1) is found to satisfy the functional
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A Fig. 1: Data collapse of the aging curves of the event-
event correlation functions for different values of the natural
waiting time. Inset: the semi-g-log plot of the collapsed
curve (see Box in the editorial paper for the definition of the
g-logarithmic function).The straight line implies that the
scaling function is of the g-exponential form with g ~ 2.98.
The ensemble average is performed over 120000 numerical
runs. All quantities are dimensionless.

relation: C(n + ny, ny) = C(n/f(nw)). The relation of this kind is
called the scaling relation, and the associated function C of a sin-
gle argument is termed the scaling function. For earthquake after-
shocks, f(n.) is empirically given by f(n,,) ~ (n,,)” with a positive
exponent ¥. It is emphasized that these properties are revealed by
the use of the natural time, not the conventional time.

The above result sheds new light on the physical nature of af-
tershocks. The crust has a complex landscape regarding the stress
distribution at faults. A main shock can be regarded as a kind of
quenching process. Aftershocks following a main shock give rise to
nonequilibrium nonstationary process. It is a slow relaxation
process due to the power-law nature of the Omori law. Combin-
ing these features with the above-mentioned aging phenomenon
and scaling relation, one recognizes that the mechanism governing
aftershocks may be of glassy dynamics. This observation is of
particular interest since, according to the recent investigations of
Baldovin and Robledo (e-print cond-mat/0504033) and of Pluchi-
no, Rapisarda and Latora (e-print cond-mat/0507005), there is
some evidence which suggests the existence of a deep connection
between nonextensive statistical mechanics and glassy dynamics.

The Gutenberg-Richter law has been a touchstone for any mod-
el of earthquakes. Real seismicity is however characterized by much
richer phenomenology. The novel laws, phenomena and relations
mentioned above give stringent criteria for modeling. From the
physical viewpoint, what is more important is to examine how
these properties are universal for complex systems with catastro-
phes. Model simulation may be useful for this purpose.

Recently, Tirnakli and Abe [5] have numerically reanalyzed a
simple mean-field model called the coherent noise model in
order to examine if the aftershocks described by it can exhibit
the aging and scaling properties. This model is already known to
describe both the Gutenberg-Richter law and the Omori law. In
the analysis, a main shock is identified and the associated Omori
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regime is fixed. As expected, the model is nonergodic and, ac-
cordingly, the time average and the ensemble average of a phys-
ical quantity are different from each other. We have ascertained
that, for the event-event correlation function (defined by the
natural-time average) in Eq. (1), the model well reproduces the
aging and scaling properties (together with the form of the scal-
ing function, C) discovered in Ref.[3] for real seismicity. On the
other hand, an intriguing feature was found for the event-event
correlation function defined by the ensemble average with
respect to numerical runs. To distinguish such a correlation func-
tion from the one with the natural-time averages in Eq. (1), it is
denoted here by D(n + 1., ). This quantity also turned out to
exhibit the aging phenomenon with respect to the natural wait-
ing time, that is, the smaller the value of the natural waiting time
is, the faster correlation decays. So, the system has an internal
clock. Fig. 1 shows that the aging curves become collapsed to a
single curve by the rescaling of the natural time: D(n + ny,, 1,,) =
D(n/(n,)"), establishing the scaling property. The inset presents
its semi-g-log plot. The straight line there implies that the scal-
ing function, D, is given by the g-exponential function.

Now, according to Tsallis [6], there may be “g-triplet” {gsut Gsens
qra1} for a system described by nonextensive statistics, where gt is
the entropic index appearing in the maximum Tsallis entropy
distribution as well as the Tsallis entropy itself, gen is the index
characterizing sensitivity of a nonlinear dynamical system to
the initial condition and gr controls the rate of relaxation and
decay of correlation. In the case of a simple system described by
Boltzmann-Gibbs-type statistics, the g-triplet may be given by {g,.
tab Gsen> et} = {1, 1, 1}. In the case of a complex system, physical
quantities are often expressed empirically in terms of the g-
exponential function: e.g., probability distributions (gsa), the dis-
tance between two trajectories of a dynamical system (gsen) and
relaxation or correlation (gr), with the values all different from
unity. An example is provided by the recent work done by the
people from NASA [7], who have discovered a non-Boltzmann-
Gibbs case in a single physical setup. Analyzing the fluctuating
magnetic field strength observed by Voyager 1 in the solar wind,
they have found that {gstat, Gsen» gret} = {1.75 £ 0.06,-0.6 £0.2, 3.8
+0.3}.

Therefore, the g-exponential scaling function obtained for af-
tershocks in the coherent noise model, D, with Grel = 2.98, which
is notably different from unity, could be seen as a fingerprint of
further relevance of nonextensive statistics.

Science of complexity certainly enables one to reveal novel
aspects of real seismicity. Nonextensive statistics is expected to
offer a guiding principle for a deeper understanding of complex
dynamical systems with catastrophes, in general and complexity
of seismicity, in particular.
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ore than fifteen yeas ago, a generalized thermostatistical

formalism (usually referred to as nonextensive statistical
mechanics) based on a power-law entropic measure S, was
advanced by Constantino Tsallis [1]. Increasing attention has been
paid to the Tsallis proposal in recent years, because it has been
hailed by many researchers as a useful tool for the description of
certain aspects of physical scenarios exhibiting atypical thermo-
dynamical features due, for instance, to the presence of long range
interactions. When the Tsallis formalism appeared in 1988, it was
not at all clear what possible physical applications it might have.
The first hint pointing towards a relationship between the Tsallis'
ideas and the thermodynamics of systems with long range inter-
actions came in 1993 [2], when it was realized that the Tsallis
entropic functional is closely related to a family of distribution
functions well known by astronomers studying the dynamics of
stellar systems: the polytropic stellar distributions. In point of fact,
the discovery of the connection between Tsallis entropy and the
stellar polytropic distribution constituted the first application of
the Tsallis' formalism to a concrete physical problem. Stellar
systems, such as stellar clusters or galaxies, are important examples
of astrophysical self-gravitating systems, where the gravitational
interaction between the constituents of the system play a funda-
mental role in determining the system's properties. The
exploration of the connections between the Tsallis thermostatis-
tical formalism and the physics of self-gravitating systems has
been the focus of a considerable research activity in recent years
[3-7].

Nonextensive statistical mechanics is built up on the basis of
the nonextensive, power-law entropy S, [1]. The entropic index
q (also called the Tsallis' entropic parameter) characterizes the
statistics we are dealing with. In the limit ¢ — 1 the usual Boltz-
mann Gibbs (BG) expression is recovered: S; = S (for the
definitions of the basic quantities associated with the g-entropy
see the Box in the editorial introduction by Tsallis and Boon to
the present Issue). Optimizing the entropic measure S, under the
constraints imposed by normalization and the mean value of the
energy, one obtains the probability distribution associated (in
the context of Tsallis' formalism) with the thermal equilibrium or
metaequilibrium of the system under consideration. The main
property of this g-generalized maximum entropy distribution is
that it exhibits a power-law like dependence on the microstate
energy €; instead of the exponential dependence associated with
the standard Boltzmann-Gibbs thermostatistics.

Galaxies can be regarded as self gravitating N-body systems
that are trapped for a long time in a non-collisional regime (un-
til collisional effects finally become important) where the stars
move under the influence of the mean potential @ generated by
the whole set of stars, @ being a function of the spatial position x.
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The description of a state of any collisionless system is given by
a distribution function F(x, v, f) in a 6-dimensional phase space
where v is the velocity vector and ¢ the time. The fundamental
equation of stellar dynamics is (as far as collisionless systems are
concerned) the Vlasov equation

ar

E"‘V-V;EF—V;;(I)‘VUF:O, (1)
coupled to an equation relating the distribution function F(x, v, t)
with the Newtonian gravitational potential @,

b(x) = —Gmeaﬂx’dav’, 2)

where G is Newton's gravitational constant and m denotes the
mass of each individual star. The Vlasov equation can also be writ-
ten as (dF/dt) o, = 0, meaning that the total time derivative of the
distribution function, evaluated along the orbit of a single star
moving in the gravitational potential @, vanishes. It has to be
stressed that the non-collisional dynamics governed by the
Vlasov-Poisson system provides only an approximate description
of the behaviour of an N-particle self-gravitating system. However,
this approximation is very useful for the study of various stellar
systems [8]. A complete (Newtonian) account of the dynamics of
a self-gravitating N-particle system is provided by the full set of
N coupled (Newtonian) equations of motion of the N-particles.
In general, this approach to the dynamics of self-gravitating sys-
tems is investigated via numerical N-body simulations (see, for
instance, [7]).

The Vlasov equation (1) for self gravitating systems, with the
potential @ given by (2), is nonlinear, since the gravitational
potential ® is given, in a self-consistent way, in terms of the dis-
tribution function F. An important feature of the Vlasov-Poisson
system is that, given a functional of the form

C[F] = /g(F}d3xd3v, (3)

the solutions of the Vlasov equation (1) verify dC/dt = 0. The total
energy of the system, given by

E=D2 fsz(x,v}dsxcf‘v = (i / FeIFELY) oy oo dixd v, (4)
2 2 | — x|

is, of course, preserved under the evolution governed by equations

(1-2).

When stellar systems relax to an equilibrium (or to a meta-
equilibrium) state, one expects them to “forget” all information
about their initial conditions with the exception of the conserved
quantities. Consequently, if one tries to infer by recourse to a
maximum entropy prescription the final relaxed state, it is rea-
sonable to use the conserved quantities as constraints. The
natural constraints for spherical stellar systems are the total mass
and energy of the system. However, if one tries to maximize the
standard Boltzmann-Gibbs entropy of the system under the con-
straints imposed by the conservation of total mass and energy,
one obtains the isothermal sphere distribution, which has infinite
mass and energy [8].

In [2], it was shown that the extremalization of the non ex-
tensive g-entropy under the same constraints leads to the stellar
polytropic sphere distributions which, for a certain range of the
q parameter, are endowed with finite mass and energy, as physi-
cally expected. This constituted the first clue suggesting that the
generalized thermostatistical formalism based on S is relevant
for the study of systems exhibiting non extensive thermody-
namical properties due to long range interactions.
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Stellar polytropic sphere distributions are of the form

fx,v) = f(&) = A(® — &)" 32 &<
0 € > ‘I>Os (5)
where
gyl + ®(x), (6)

2

is the total energy (per unit mass) of an individual star, and A, @,
and n (usually called the polytropic index) are constants. The
quantity f(x,v)d’xd’v denotes the number of stars with position
and velocity vectors respectively within the elements d°x and d*v
in position and velocity spaces. The polytropic distribution (5)
exhibits, after an appropriate identification of the relevant para-
meters, the g-MaxEnt form. The entropic parameter g can be re-
lated to index # (see Figure 1) by identifying #n-3/2 with g/(1-q),
obtaining [5]
1 1

1_q=ﬂ—§. (7)

The limit n — oo (hence g = 1) recovers the isothermal sphere
case; n =5 corresponds to the so called Schuster sphere; for n < 5
(hence q < 7/9), finiteness for mass and energy naturally
emerges. The cut-off in the polytropic distribution (5) is an
example of what is known, within the field of non extensive
thermostatistics, as “Tsallis cut-off prescription”, which affects
the g-maximum entropy distributions when g < 1. In the case of
stellar polytropic distributions this cut-off arises naturally, and
has a clear physical meaning. The cut-off corresponds, for each
value of the radial coordinate r, to the corresponding gravita-
tional escape velocity [8].

Polytropic distributions constitute the simplest, physically
plausible models for self-gravitating stellar systems [8]. Alas,
these models do not provide an accurate description of the
observational data associated with real galaxies. In spite of this,
the connection between the S, entropy and stellar polytropes is
of considerable interest. Besides the notable fact that, for a spe-
cial range of values of g, non-extensive thermostatistics leads to
finite stellar systems, the established connection between the S,
entropy and stellar polytropic distributions is interesting for
other reasons. Polytropic distributions arise in a very natural way
from the theoretical study of self-gravitating systems. The inves-
tigation of their properties has constantly interested theoretical
astrophysicists during the last one hundred years [8]. Polytropic
distributions are still the focus of an intense research activity
[3-7], and the study of their basic properties constitutes a part of
the standard syllabus of astrophysics students. Now, polytropic
distributions happen to exhibit the form of q-MaxEnt distributions,
that is, they constitute distribution functions in the (x,v) space that
maximize the entropic functional Sy under the natural constraints
imposed by the conservation of mass and energy [2]. Tt is important
to remember that the original path leading to the S, entropic
form was not motivated by self-gravitating systems, nor was it
motivated by any other specific system. The entropic form S, was
proposed by recourse to very general arguments dealing with the
consideration of (i) entropic forms incorporating power law
structures (inspired on multifractals) and reducing to the stan-
dard logarithmic measure in an appropriate limit and (ii) the
basic properties that a functional of the probabilities should have
in order to represent a physically sensible entropic measure [1].
The g-entropy is a quite natural and, to some extent, unique
generalization of the Boltzmann-Gibbs-Shannon measure.
Taking this into account, it is remarkable that the extremalization
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of the g-measure leads to a family of distribution functions of
considerable importance in theoretical astrophysics. In a sense,
astrophysicists, when studying Newtonian self-gravitating
systems, have been dealing with g-MaxEnt distribution functions
for over a hundred years without being aware of it. The link be-
tween the Tsallis non extensive g-entropy and stellar polytropic
distributions consitutes a clue (among several others) indicating
that the entropic measure S, is not just an ad hoc mathematical
construction.

As already mentioned, many interesting contributions have
been made in recent years in connection with the application of
Tsallis' thermostatistics to self gravitating systems in general, and
to the stellar polytropes in particular [3-7]. Sau Fa and Lenzi have
obtained the exact equation of state for a two-dimensional self
gravitating N-particule system within Tsallis thermostatistics [3].
An interesting analysis of the Jean's gravitational instability of a
self-gravitational system characterized by a g-gaussian velocity
distribution was done by Lima, Silva, and Santos [4]. A detailed
study of the gravothermal catastrophe of self-gravitating systems
in conection with Tsallis' g-entropy was performed by Taruya
and Sakagami (see [5] and references therein). It has been
recently pointed out by Chavanis and Sire [6], that the criterion
for nonlinear dynamical stability for spherical stellar systems gov-
erned by the Vlasov-Poisson equations resembles a criterion of
thermodynamical stability. On the basis of this, it is possible to
develop a thermodynamical analogy to study the nonlinear dy-
namical stability of spherical galaxies. Within this approach, the
concepts of entropy and temperature would be essentially effec-
tive. In [6], the Tsallis functional is interpreted as a useful H-
function connecting continuously stellar polytropes and isother-
mal stellar systems.

On the basis of long term, N-body simulations of self gravi-
tating systems, Taruya and Sakagami have obtained important
numerical evidence for a connection between the physics of self-
gravitating systems and the Tsallis formalism [7]. Taruya and
Sakagami have shown that the evolution of a stellar system con-
fined within an adiabatic wall (starting with initial conditions
away from the Boltzmann-Gibbs distribution, and before the sys-
tem enters the gravothermally unstable regime and undergoes
core collapse) can be fitted remarkably well by a sequence of

polytropic distributions (that is, Tsallis' g-maxent distributions)
with an evolving polytropic index (i.e., evolving g-parameter).
Taruya and Sakagami found that the alluded sequence of
polytropic distributions provides a good description both of the
density profile, and of the single-particle energy distribution of
the transient states of the system. Even more interesting, they
also found numerical evidence that the same kind of behaviour
occurs if the outer boundary is removed. This suggest that the
polytropic distributions may play an important role as
quasi-attractors, or quasi-equilibrium states of an evolving self-
gravitating system [7].

Summing up, we have seen that the connection between
Tsallis entropy and self-gravitating systems has been an active
research field in recent years, generating a considerable amount
of new results. For sure, there are still several open questions to
be addressed. For instance, is there any role to be played here by
the super-statistics formalism (see the article by Beck, Cohen,
and Rizzo in this Issue)? Another interesting question, in our
opinion, concerns the possible relationship between the physics
of systems with long range interaction, and the recently advanced
proposal by Tsallis, Gell-Mann and Sato [9], that special occu-
pancies of phase space may make the S, entropy additive.
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< Fig. 1: Stellar polytropes are simple
models for stellar systems exhibiting a
particle density in position-velocity
space that is a power-like function of
the energy. The conco-mitant
exponent is n-3/2, where n is called
the polytropic index. This polytropic
distribution can be obtained by
optimizing the system's g-entropy
under the constraints imposed by the
system's total mass and energy. The
polytropic index n is here plotted as a
function of the Tsallis' entropic
paramenter g.The red star corresponds
to the so called Schuster sphere, with n
=5and g=7/9.For n<5(q <7/9) the
polytropic distributions have finite

mass and energy. All the depicted
quantities are dimensionless.
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his article illustrates how very small deviations from the

Maxwellian exponential tail, while leaving unchanged bulk
quantities, can yield dramatic effects on fusion reaction rates and
discusses several mechanisms that can cause such deviations.

Fusion reactions are the fundamental energy source of stars
and play important roles in most astrophysical contexts. Since
the beginning of quantum mechanics, basic questions were
addressed such as how nuclear reactions occur in stellar plasmas
at temperatures of few keV (1 keV = 11.6 x 10° K) against
Coulomb barriers of several MeV and what reactions or reaction
networks dominate the energy production. It was soon realized
that detailed answers to such questions involved not only good
measurements or quantum mechanical understanding of the
relevant fusion cross sections, but also the use of statistical physics
to describe the energy and momentum distributions of the ions
and their screening [1].

Gamow understood that reacting nuclei penetrate Coulomb
barriers by means of the quantum tunnel effect and Bethe
successfully proposed the CNO and then the pp cycle as candi-
dates for the stellar energy production: this description has been
directly confirmed by several terrestrial experiments that have
detected neutrinos produced by pp and CNO reactions in the
solar core [2].

In the past only a few authors (e.g., d'E. Atkinson, Kacharov,
Clayton, Haubold) have examined critically the energy distrib-
ution and proposed that such a distribution could deviate from
the Maxwellian form. In fact, it is commonly accepted that
main-sequence stars like the Sun have a core, i.e. an electron
nuclear plasma, where the ion velocity distribution is
Maxwellian. In the following, we first discuss why even tiny devi-
ations from the Maxwellian distribution can have important
consequences and then what can be the origin of such devia-
tions.

Thermonuclear reaction in plasmas and distribution tails

In a gas with n; (1) particles of type 1 (2) per cubic centimeter
and relative velocity v, the reaction rate r (the number of reactions
per unit volume and unit time) is given by

r=(1+0n)" n1n2<0'v> R (1)

where 0 = o(v) is the nuclear cross section of the reaction. The
reaction rate per particle pair is defined as the thermal average
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A Fig. 1: The Gamow peak and energy selection. In the
upper panel (a) the exponential thin black curve is the
Maxwellian distribution. The rapidly increasing dash blue
curve shows the behavior of the penetration factor N x exp (-
VEs = E) for the solar reaction *He + *He — ‘He + 2p (Ec =
11.83 MeV and N = 10°).The red thick curve shows the
product of the two curves (Gamow peak) times 10°. The
horizontal red band indicates the energy range of the
reacting particles. The lower panel (b) shows how different
reactions select different windows of particle energies.The
Gamow peak (energy window) moves to higher energies
going fromp + p — d+ v + e* (Es = 493 keV, green), to *He +
*He — ‘He + 2p (Ec = 11.83 MeV, red),and p + "N — O + y
(Ec =45.09 MeV, blue). Correspondingly, the peaks become
(much) lower; note that the three curves have been
multiplied times 10°, 107, and 10%, respectively, to make
them visible on the same scale.

(ov) :f:f(v) ovdv, (2)

where the particle distribution function f(v) is a local function of
the temperature [3].

Therefore, the reaction rate per particle pair {ov) is determined
by the specific cross section and by the velocity distribution
function of the reacting particles. When no energy barrier is
present and far from resonances, cross sections do not depend
strongly on the energy. Most of the contribution to (Gv) comes
from particles with energy of the order of kT, and the dependence
on the specific form of f(v) is weak. The same is true for bulk
properties that receive comparable contributions from all parti-
cles: e.g., the equation of state.

The situation is very different in the presence of a Coulomb
barrier, when the reacting particles are charged, as in the fusion
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(a)

E/KkT

(b)

E /KT

A Fig. 2: Effects of tiny changes in the tail of the distribution
for the reaction p + "“N. Using the parametrization of Eq. (5),
the upper panel (a) shows the effect of taking g = 1.002
(green) and g = 0.998 (red), while the lower panel (b) shows
the effect of g = 1.01 (green) and g = 0.99 (red); black curves
correspond to the usual Maxwell distribution (g = 1).In the
lower panel (b) the green (red) Gamow peak (thick lines) is
divided (multiplied) by an additional factor of five. Note that
thin curves (exponentials and g-exponentials) have been
multiplied by 10° to enounce their tiny differences.

reactions that power stars [7]. The penetration of large Coulomb
barriers (Zo/ r is of the order of thousands in units of kT when r
is a typical nuclear radius) is a classically forbidden quantum
effect. The penetration probability is proportional to the
Gamow factor exp [-VEG/E], where the Gamow energy
Eg = 2uc*(Z\Z,am)?, ais the fine structure constant, i is the
reduced mass, and Z, ; are the charges of the ions. The cross sec-
tion is exponentially small for E <« Eg and grows extremely fast
with the energy; therefore, one usually defines the astrophysical S
factor, whose energy dependence is weaker

o(E) = %eﬁ (3)

The two factors in the integrand in Eq. (2) that carry most of the
energy dependence are the Maxwellian distribution ec e**",
which is ejg&wntially suppressed for E > kT, and the penetration
factor e"VEe/E | which is exponentially suppressed for E < Eg.
Contributions to the rate come only from an intermediate region
(Gamow peak) around the temperature-dependent energy
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which is called the most effective energy, since most of the react-
ing particles have energies close to Ey.

Figure 1 gives a pictorial demonstration of how the Gamow
peak originates and how different reactions select different parts
of the distribution tail and can be used to probe it.

In the upper panel (a) the exponentially decreasing function
(thin black curve) is the Maxwellian factor; the rapidly growing
function (dash blue curve) is the penetration factor (for graphi-
cal reason multiplied by 10°) of one of the most important
reactions in the Sun, "He + *He — “He + 2p (Eg = 11.83 MeV),
which corresponds to a most effective energy Eo = (Eg(kT)*/4)"” =
17.036 kT for kT = 1.293 keV = 11.6 x 10° K; the product of the
two functions (Gamow peak) is the thick red curve. Note that the
Gamow peak, and therefore the rate, is very small (it has been
multiplied by an additional 10°® factor to make it visible on the
same scale of the other curves), since at the most effective energy
Ej both the cross section and the number of particles are expo-
nentially small. At this point it is important to remark that the
area under the Maxwellian curve for energies within the Gamow
peak (the energy window indicated by the red band) is of the
order of 0.1% of the total area: only a few particles in the tail of the
distributions contribute to the fusion rate.

The fact that the penetration factor effectively selects particles
in the tail of the distribution is the more dramatic the larger the
charge of the reacting ions: for the p+ "N — *O + ¥ (the leading
reaction of the CNO cycle, which dominates the energy produc-
tion in main-sequence stars larger or older than the Sun) the
contributing particles are few in a million.

The effect on the Gamow peak when increasing the charges of
the reacting nuclei is shown in the lower panel (b) of Figure 1. The
green, red, and blue curves show the Gamow peak multiplied by
10°, 107, and 10*, respectively, for three fundamental reactions in
main-sequence stars: p+p — d + v+ e* (Eg =493 keV), "He +
’He — ‘He + 2p (Eg = 11.83 MeV),and p + "N — "O + y (Eg =
45.09 MeV)). It is immediately evident that the larger the charges
of the ions the higher is the energy of the particles that contribute
to the rate, the (much) lower is the peak and, therefore, the (much)
smaller is the rate. In fact the maximum of the Gamow peak Ej o<
E{? o< (Z12,)*" and its height is proportional to exp (-3E/kT).

A convenient parametrization of deviations from the Maxwell
distribution is the deformed g-exponential:

expy (-5 = (1-0-9) ) o

which naturally appears in Tsallis' formulation of statistical
mechanics [4]. This particular deformation of the exponential has
the advantage of describing both longer tails (for q > 1) and cut-
off tails (for q < 1), while reproducing the exponential in the
limit q — 1.

Figure 2 shows the effect of substituting into the Maxwellian
distribution exp(-E/ kT) the distribution N, exp,(-E/kT), where
Nj is the normalization factor that conserves the total number of
particles. We show the effect for the p + "N reaction and the values
(a) g =1%£0.002 and (b) q =1 £ 0.01. This reaction determines
the rate of energy production from the CNO cycle, dominant at
older stages and, therefore, also determines the time of the exit
from the main sequence. Black curves refer to the exponential
(q=1), red curves refer to the cut-off (q < 1) exponential, and
green curves refer to the longer-tail (q > 1) exponential.

Note that all exponentials have been multiplied times a huge
10° factor to emphasise their tiny differences: these values of g
produce functions that are almost indistinguishable from the
exponential unless one looks very far in the tail.
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One can make several remarks:

* Gamow peaks are shifted towards higher energies, when the
distribution has a tail longer than the exponential (green curves,
q > 1); they are shifted towards lower energies for cut-off expo-
nentials (red curves, g < 1);

« the effect is larger the larger the deviation from the exponential
(the larger |q - 1]);

+ the peaks (and the rates) become correspondingly higher for q >
1 and smaller for q < 1;

« the effect on the rate is already large for |1 - q| = 0.002, it
becomes huge (more than a factor of 10) for |1 - (ﬁ =0.01; note
that the green (red) peak in lower panel (b) of figure 2 (|1 - | =
0.01) has been divided (multiplied) by five to make them fit on
the same scale!

These deviations should be carefully estimated, since reliable
calculations of nuclear reaction rates in stellar interiors is funda-
mental for a quantitative understanding of the structure and
evolution of stars. In fact, while the overall stellar structure is
rather robust, changes of some of the rates even by few percent
can produce detectable discrepancies, when precise measurements
are possible, e.g., in the case of the solar photon and neutrino
luminosity, and mechanical eigenfrequencies [2]. In quasi-stellar
objects like Jupiter, deviations could be even larger and explain
their excess energy [5].

As already shown in the recent past, very small deviations
from Maxwellian momentum distribution do not modify the
properties of stellar core and are in agreement with the helio-
seismology constraints [6], but may affect the evaluation of the
nuclear fusion rates that may be enhanced or depleted, depend-
ing on the superdiffusion or subdiffusion properties of the
particles [7].

Deviations from Maxwellian distribution

Normal stellar matter, such as that in the Sun, is non-degenerate,
i.e., quantum effects are small (in fact, they are small for electrons
and completely negligible for ions), is non-relativistic, and is in
good thermodynamical equilibrium. On this ground, the particle
velocity distribution is almost universally taken to be a Maxwell-
Boltzmann (MB) distribution.

Concerning the thermodynamical equilibrium, main sequence
stars are more precisely in a stationary state where the luminosity
equals the heat production rate. This metastable state has a long
life-time, of the order of the star lifetime, and it ends when the
nuclear fuel is burned out. In addition, the quasiequilibrium is only
local, since the temperature decreases from core to surface. How-
ever, nuclear reactions are often, but not always, sufficiently slow on
the scale of thermal and mechanical exchanges and take place on
such a small scale that spatial and temporal deviations from
equilibrium can be neglected to a very good first approximation.

At least in one limit the MB distribution can be rigorously
derived: systems that are dilute in the appropriate variables and
whose residual interaction is small compared to the one-body
energies. In spite of the fact that the effects of the residual inter-
action cannot be neglected (the electron screening factor is a
well-known example of correction due to the astrophysical plasma
environment) at zero order the many-body correlations can be
neglected and the stellar interior can be studied in this dilute limit.
In this limit the velocity distribution is the Maxwellian one.
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However, one should keep in mind that derivations of the
ubiquitous Maxwell-Boltzmann distribution are based on several
assumptions [7]. In a kinetic approach, one assumes (1) that the
collision time is much smaller than the mean time between colli-
sions, (2) that the interaction is sufficiently local, (3) that the
velocities of two particles at the same point are not correlated
(Boltzmann's Stosszahlansatz), and (4) that energy is locally con-
served when using only the degrees of freedom of the colliding
particles (no significant amount of energy is transferred to col-
lective variables and fields). In the equilibrium statistical
mechanics approach, one uses the assumption that the velocity
probabilities of different particles are independent, corresponding
to (3), and that the total energy of the system could be expressed
as the sum of a term quadratic in the momentum of the particle
and independent of the other variables, and a term independent
of momentum, but if (1) and (2) are not valid the resulting effec-
tive two-body interaction is non-local and depends on the
momentum and energy of the particles. Finally, even when the
one-particle energy distribution is Maxwellian, additional
assumptions about correlations between particles are necessary to
deduce that the relative-velocity distribution, which is the relevant
quantity for rate calculations, is also Maxwellian.

In the following we give arguments and mechanisms that lead
to distribution functions that are different from the MB one in a
stationary state.

Correlations between particles, so that the probability distribu-
tion of the system is not described by the product of independent
probabilities of the components, are in general responsible for
such more general distributions. The specific microscopic mech-
anisms that generate these correlations depend on the particular
system and there exist many approaches to derive the relevant dis-
tributions.

In an approach that uses the Fokker-Planck equation, which
takes into account the average effects of the environment through
the drift J(p) and diffusion D(p) coefficients, stationary solutions
different from the Maxwell distribution (e.g. Druyvenstein or Tsal-
lis like distributions) can be obtained, when J(p) and D(p) include
powers of p higher than the lowest order [8]. The presence of high-
er powers of p, i.e., higher derivative terms, can be interpreted as a
signal of non-locality in the Fokker-Planck equation. We stress that
these distributions are stationary (stable or metastable) and what
counts to decide the distribution is the type of collisions between
ions and the dependence on momentum of the elastic collision
cross sections (Coulomb, screened Coulomb, enforced Coulomb,
among others), or the presence of ion-ion correlations [9].

The presence of random fields (e.g., distributions of random
electric micro-fields or, in general, of random forces) introduces
in the kinetic equations factors whose effect is to enhance or to
deplete the high-momentum tail of the distribution function [7].

Because of the many-body nature of the effective forces, which
makes the collisions not independent, the distributions of the rel-
evant degrees of freedom observed, e.g., the ones selected by a
fusion reaction, can be different from the distributions of the
quasi-particles that describe the plasma. In addition the plasma
makes effective interactions time dependent (memory effects) and
non-local. These effects depend strongly on the energy of the
selected particles and on the collisional frequency.

One important and clear example of this last point is given by
the fact that many processes, such as nuclear fusion itself, depend
on momentum rather than on energy. This distinction is impor-
tant because, due to plasma many-body effects, an uncertainty
relation holds between momentum and energy [10]. Even when
the energy distribution maintains its Maxwellian expression, the
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momentum distribution can be different in the high energy tail.
In fact, this quantum uncertainty effect (not Heisenberg uncer-
tainty) between energy £ and momentum p, caused by the
many-body collisions and described by the Kadanoff-Baym
equation, implies an energy-momentum distribution of the form

I ‘
fo(€.p) = —n(€)6,(E.p) (6)
with

Im™(E. p)

5&P) = FEoE R p) + UmSR D)

7)

where ~7(£.p) is the mass operator of the one-particle Green
function. After integrating in d€ the product of fo(&, p) and the
Maxwellian energy distribution, we obtain a momentum distrib-
ution with an enhanced high-momentum tail. Although this
approach produces a deviation from the MB distribution, the state
represented by fo(p) is an equilibrium state [11, 12]. The
Maxwellian distribution is recovered in the limit when 8,(€, p)
becomes a 6 function with a sharp correspondence between
momentum and energy.

Distributions different from the Maxwellian one can also be
obtained axiomatically from non-standard, but mathematically
consistent, versions of statistical mechanics that use entropies
different from the Boltzmann-Gibbs one [4, 13].

We have argued that it is not sufficient to know that the
Maxwellian distribution is a very good approximation to the par-
ticle distribution. We must be sure that there are no corrections
to a very high accuracy, when studying reactions that are highly
sensitive to the tail of the distribution, such as fusion reactions
between charged ions. Several mechanisms have been outlined
(others need to be studied) that can produce small, but important
deviations in the tail of the distribution.
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he singular dynamics at critical attractors of even the simplest

one dimensional nonlinear iterated maps is of current interest
to statistical physicists because it provides insights into the limits of
validity of the Boltzmann-Gibbs (BG) statistical mechanics. This
dynamics also helps inspect the form of the possible generaliza-
tions of the canonical formalism when its crucial supports, phase
space mixing and ergodicity, break down.

The fame of the critical attractors present at the onset of chaos
in the logistic and circle maps stems from their universal proper-
ties, comparable to those of critical phenomena in systems with
many degrees of freedom. At these attractors the indicators of
chaos withdraw, such as the fast rate of separation of initially close
by trajectories. As it is generally understood, the standard expo-
nential divergence of trajectories in chaotic attractors suggests a
mechanism to justify the property of irreversibility in the BG
statistical mechanics [1]. In contrast, the onset of chaos imprints
memory preserving properties to its trajectories.

The dynamical nature of trajectories is appraised on a regular
basis through the sensitivity to initial conditions &, defined as

Eixo) = A}(ifg . (Ax:/Axo), t large, (1)

where Ax; is the initial separation of two trajectories and Ax; that at
time . For a one-dimensional map it has the form &(xo) = exp(Ait),
with A; > 0 for chaotic attractors and A; < 0 for periodic ones. The
number A, is called the Lyapunov coefficient. At critical attractors 4,
=0 and &, does not settle onto a single-valued function but
exhibits instead fluctuations that grow indefinitely. For initial posi-
tions on the attractor &; develops a universal self-similar temporal
structure and its envelope grows with f as a power law.

It has been recently corroborated [2]-[5] that the dynamics at
the critical attractors associated with the three familiar routes to
chaos, intermittency, period doubling and quasiperiodicity [6],
obey the features of the g-statistics, the generalization of BG sta-
tistics based on the g-entropy S, [7]. The focal point of the
g-statistical description for the dynamics at such attractors is a &
associated with one or several expressions of the form

fr(xo) = equ[lq(xo) t], (2)

where q is the entropic index and 4, is the g-generalized Lyapunov
coefficient. Also the identity K; = A; (where the rate of entropy
production K is given by Kit = Sp (t) - Spc(0) with Sps the Boltz-
mann-Gibbs entropy) generalizes to

Ky= 2 (3)
where the rate of g-entropy production Kj is defined via Kyt =
54(t) - 54(0) [31, [4], [7].

Tsallis g index & Mori’s g-phase transitions

The central issue of research in g-statistics is perhaps to confirm
the occurrence of special values for the entropic index g for any
given system and to establish their origin. In the case of critical
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attractors the allowed values for g are obtained from the univer-
sality class parameters to which the attractor belongs. For the
simpler cases, the pitchfork and the tangent bifurcations, there is
a single well-defined value for the index q [2]. The pitchfork bifur-
cations form the sequence of period doublings that culminate in
the chaos threshold whereas at the tangent bifurcation chaos
develops via intermittency. For critical multifractal attractors, as in
the period doubling accumulation point and in the quasiperiodic
onset of chaos, the situation is more complicated and there appear
to be a multiplicity of indexes g but with precise values given by
the attractor scaling functions. They come out in pairs and are
related to the occurrence of dynamical ‘g-phase’ transitions [4],
and these are identified as the source of the special values for the
entropic index gq. The g-phase transitions connect qualitatively
different regions of the multifractal attractor.

The main quantities in the thermodynamic formalism of
g-phase transitions (developed by Mori and colleagues in the late
80’s [8]) are the spectral functions ¢(q) and W(A), related to each
other via Legendre transformation, the function of generalized
Lyapunov coefficients A(q), given by A(q) = d¢(q)/dq, and the
variance v(q) = dA(q)/dqg. The functions ¢(q) and W(A) are the
dynamic counterparts of the multifractal dimensions D(q) and
the spectrum f(ox) that characterize the geometric structure of
the attractor [6]. As with ordinary thermal 1" order phase transi-
tions, a g-phase transition is indicated by a section of linear slope
me =1 - g in the ‘free energy’ W(A), a discontinuity at q = g in the
‘order parameter’ A(q), and a divergence at ¢ in the ‘susceptibility’
v(q). Actually an infinite family of such transitions takes place
but of rapidly decreasing strengths [4], [5].

Tangent & pitchfork bifurcations

The tangent bifurcations of unimodal (one hump) maps of gen-
eral nonlinearity z > 1 display weak insensitivity to initial
conditions, i.e. power-law convergence of orbits when at the left-
hand side (x < x.) of the point of tangency x.. However at the
right-hand side (x > x.) of the bifurcation there is a ‘super-strong’
sensitivity to initial conditions, i.e. a sensitivity that grows faster
than exponential [2]. The two different behaviors can be couched
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as a g-phase transition with indexes g and 2 - g for the two sides of
the tangency point. The pitchfork bifurcations display weak insen-
sitivity to initial conditions.

For the tangent bifurcations one has always q = 3/2, while for
the pitchfork bifurcation one has g = 5/3. Notably, these results for
the index q are valid for all z > 1 and therefore define the exis-
tence of only two universality classes for unimodal maps [2]. The
treatment of the tangent bifurcation differs from other studies of
intermittency transitions in that there is no feedback mechanism
of iterates from an adjacent chaotic region. Therefore, impeded or
incomplete mixing in phase space (a small interval neighbour-
hood around x = x,) arises from the special ‘tangency’ shape of the
map at the transitions that produces monotonic trajectories. This
has the effect of confining or expelling trajectories causing anom-
alous phase-space sampling, in contrast to the thorough coverage
in generic states with A, > 0.

Period-doubling accumulation point

For a unimodal map of nonlinearity z > 1 (e.g. the logistic map
has z = 2) with extremum at x = 0 and control parameter u the
onset of chaos is obtained at the accumulation point .. of the u
values for the pitchfork bifurcations u,, n =1, 2, ..., [6]. This is
often called the Feigenbaum attractor which reappears in multi-
ples together with the precursor cascade of period-doubling
bifurcations in the infinite number of windows of periodic tra-
jectories that interpose the chaotic attractors beyond ... The
number of cascades within each window is equal to the period of
the orbit that emerges at the tangent bifurcation at its opening. See
Fig. 1. The dynamics at the Feigenbaum attractor has been ana-
lyzed recently 3], [4]. By taking as initial condition xo = 0 at /.. it
is found that the resulting orbit of period 2 consists of trajectories
made of intertwined power laws that asymptotically reproduce the
entire period-doubling cascade that occurs for u < .. (see Fig. 2b)
It was established that &, has precisely the form of a set of inter-
laced g-exponentials, of which the g-indexes and the sets of
associated g-Lyapunov coefficients A, were determined. As men-
tioned, the appearance of a specific value for the q index (and
actually also that for its conjugate value Q = 2 - q) turns out to be

o
n
T

. __0. 1 | 1 | s | i
i5p 2 75 176 177 L8P 179
A Fig. 1: (a) The classic logistic map attractor as a function of control parameter L. (b) Enlargement of the box in (a).
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due to the occurrence of g-phase transitions between ‘local attrac-
tor structures’ at (... The values of the g-indexes are obtained from
the discontinuities of the universal trajectory scaling function o.
This function characterizes the multifractal by measuring how
adjacent positions of orbits of period 2" approach each other as n
— oo [9]. The main discontinuity in o is related to the most
crowded and most sparse regions of the attractor and in this case
q=1-In2/(z- 1) In ar, where o is the universal scaling constant
associated with these two regions. Furthermore, it has also been
shown [3], [4] that the dynamical and entropic properties at (L.
are naturally linked through the g-exponential and g-logarithmic
expressions, respectively, for the sensitivity & and for the entropy
S, in the rate of entropy production Kj,.

Quasiperiodicity & golden mean route to chaos

A recent study [5] of the dynamics at the quasiperiodic onset of
chaos in maps with zero slope inflection points of cubic nonlin-
earity (e.g. the critical circle map) shows strong parallelisms with
the dynamics at the Feigenbaum attractor described above.
Progress on detailed knowledge about the structure of the orbits
within the golden-mean quasiperiodic attractor, see Fig. 2b,
helped determine the sensitivity to initial conditions for sets of
starting positions within this attractor [5]. It was found that &, is
made up of a hierarchy of families of infinitely many intercon-
nected g-exponentials. Here again, each pair of regions in the
multifractal attractor, that contain the starting and finishing
positions of a set of trajectories, leads to a family of g-exponentials
with a fixed value of the index g and an associated spectrum of q-
Lyapunov coefficients A,.

As in the period doubling route to chaos, the quasiperiodic
dynamics consists of an infinite family of g-phase transitions, each
associated to trajectories that have common starting and finishing
positions located at specific regions of the multifractal. The spe-
cific values of the variable q (in the thermodynamic formalism) at
which the g-phase transitions take place are the same values for
the entropic index g in &, The transitions come in pairs at g and
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2 - q as they are tied down to the expressions for A, in & Again,
the dominant dynamical transition is associated to the most
crowded and sparse regions of the multifractal, and the value of its
g-index is [5] g = 1- Inwgn/2 In0tgm Where e, = (\/5 - 1)/2 is the
golden mean and @, is the universal constant that plays the
same scaling role as ar .

Structure in dynamics

The dynamical organization within critical multifractal attractors is
difficult to resolve from the consideration of a straightforward
time evolution, i.e. the record of positions at every time ¢ for a tra-
jectory started at an arbitrary position x, within the attractor. In this
case what is observed are strongly fluctuating quantities that persist
in time with a scrambled pattern structure that exhibits memory
retention. Unsystematic averages over xo would rub out the details
of the multiscale dynamical properties we uncovered. On the other
hand, if specific initial positions with known location within the
multifractal are chosen, and subsequent positions are observed only
at pre-selected times, when the trajectories visit another selected
region, a distinct g-exponential expression for &; is obtained.

Manifestations of g-statistics in condensed matter
problems

There are connections between the properties of critical attractors
referred to here and those of systems with many degrees of
freedom at extremal or transitional states. Three specific examples
have been recently developed (see Table). In one case the dynam-
ics at the chaos threshold via intermittency has been shown to be
related to that of intermittent clusters at thermal critical states
[10]. In the second case the dynamics at the noise-perturbed
period-doubling onset of chaos has been found to show paral-
lelisms with the glassy dynamics observed in supercooled
molecular liquids [11]. In the third case the known connection
between the quasiperiodic route to chaos and the localization
transition for transport in incommensurate systems is analyzed
from the perspective of the g-statistics [12].
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Critical clusters & intermittency

The dynamics of fluctuations of an equilibrium critical state in
standard models of a magnetic or fluid system is seen to be relat-
ed to the dynamics at a critical attractor for intermittency. The
connection can be examined when instead of the entire critical
system a single unstable cluster of excess magnetization or densi-
ty of size R is considered. The analysis, initially developed by
Contoyiannis and colleagues [13], has been reconsidered recently
in connection with g-statistics [10].

An important element in the analysis is the determination of
the order parameter ¢(r) of a large cluster by withholding only its
most probable configurations from a coarse-grained partition
function Z. The conditions under which these configurations
dominate are evaluated as these determine an instability of the
cluster. The instability can be expressed as an inequality between
two lengths in space. This is ry > R, where 1, is the location of a
divergence in the expression for ¢(r). In a coarse-grained time
scale the cluster is expected to evolve by increasing its average
amplitude ¢ and/or size R because the subsystem studied repre-
sents an environment with unevenness in the states of the
microscopic degrees of freedom (e.g. more spins up than down).
Increments in ¢ for fixed R takes the position r, for the singulari-
ty closer to R, the dominance of this configuration in Z decreases
accordingly and rapidly so. When the divergence is reached at ro
= R the profile ¢(r) no longer describes the spatial region where
the subsystem is located. But a subsequent fluctuation would
again be represented by a cluster ¢(r) of the same type. From this
renewal process we obtain a picture of intermittency [10].

Amongst the static and dynamical properties for such single
critical cluster of order parameter ¢(r) we mention [10]: 1) The
faster than exponential growth with cluster size R of the space-
integrated ¢ suggests nonextensivity of the BG entropy but
extensivity of a g-entropy expression. 2) The finding that the
time evolution of ¢ is described by the dynamics of the critical
attractor for intermittency which implies an atypical sensitivity
to initial conditions compatible with g-statistics. 3) Both, the
approach to criticality and the infinite-size cluster limit at criti-
cality manifest through a crossover from canonical to g-statistics.

Glassy dynamics & noise-perturbed Feigenbaum attractor

The erratic motion of a Brownian particle is usually described by
the Langevin theory. As it is well known, this method finds a way
round the detailed consideration of many degrees of freedom by
representing the effect of collisions with molecules in the fluid in

Route to chaos | Intermittency Qua:
Common Vanishing ordinary Lyapunov coefficient,
properties dynamical phase transitions (Mori's g-phases)
power-law dynamics, g-sensitivity, g-Pesin identity
Distinctive (Also) faster
properties than exponen-
tial dynamics
Applications in
condensed Critical clusters
matter physics
Applications in | Information &
other disciplines | other flows in
networks, ...
A Table: Summary.The three routes to chaos, properties and
applications.

which the particle moves by a noise source. The approach to
thermal equilibrium is produced by random forces, and these are
sufficient to determine dynamical correlations, diffusion, and a
basic form for the fluctuation-dissipation theorem. In the same
spirit, attractors of nonlinear low-dimensional maps under the
effect of external noise can be used to model states in systems with
many degrees of freedom. In a one-dimensional map with only
one control parameter (U the consideration of external noise of
amplitude o could be thought to represent the effect of many
other systems coupled to it, like in the so-called coupled map lat-
tices [9]. The general map formula can be seen to represent a
discrete form for a Langevin equation with nonlinear ‘friction
force’ term [11].

The dynamics of noise-perturbed logistic maps at the chaos
threshold has been shown to exhibit parallels with the most
prominent features of glassy dynamics in, for example, super-
cooled liquids. In this analogy the noise amplitude o plays a role
similar to the temperature difference from a glass transition tem-
perature. Specifically our results are [11]:

1) Two-step relaxation occurring in trajectories and in their two-
time correlations when o — 0.

2) A map equivalent to a relationship between the relaxation
time and the configurational entropy.

2 2
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1+ e - I‘»— F [— g=10" cell map (blue) and
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3) Both, trajectories and their two-time correlations obey an
‘aging’ scaling property typical of glassy dynamics when 6 — 0.
4) A progression from normal diffusiveness to subdiffusive behav-
ior and finally to a stop in the growth of the mean square
displacement as demonstrated by the use of a repeated-cell map.
(see Fig. 3) The existence of this analogy is perhaps not accidental
since the limit of vanishing noise amplitude & — 0 involves loss of
ergodicity.

Localization & quasiperiodic onset of chaos

One interesting problem in condensed matter physics that
exhibits connections with the quasiperiodic route to chaos is the
localization transition for transport in incommensurate systems,
where the discrete Schrodinger equation with a quasiperiodic
potential translates into a nonlinear map known as the Harper
map [14]. In this equivalence the divergence of the localization
length corresponds to the vanishing of the ordinary Lyapunov
coefficient. It is interesting to note that the basic features of
g-statistics in the dynamics at critical attractors mentioned here
turn up in the context of localization phenomena.
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One explanation for the impressive recent boom in network
theory might be that it provides a promising tool for an
understanding of complex systems. Network theory is mainly
focusing on discrete large-scale topological structures rather than
on microscopic details of interactions of its elements. This view-
point allows to naturally treat collective phenomena which are
often an integral part of complex systems, such as biological or
socio-economical phenomena. Much of the attraction of network
theory arises from the discovery that many networks, natural or
man-made, seem to exhibit some sort of universality, meaning
that most of them belong to one of three classes: random, scale-free
and small-world networks. Maybe most important however for
the physics community is, that due to its conceptually intuitive
nature, network theory seems to be within reach of a full and
coherent understanding from first principles.

Networks are discrete objects made up of a set of nodes which
are joint by a set of links. If a given set of N nodes is linked by a
fixed number of links in a completely random manner, the result
is a so-called random network, whose characteristics can be rather
easily understood. One of the simplest measures describing a net-
work in statistical terms is its degree distribution, p(k), (see box 1).
In the case of random networks the degree distribution is a Pois-
sonian, i.e., the probability (density) that a randomly chosen node

k -2 —
has degree k is given by p(k) = % where A = k is the average
degree of all nodes in the network. However, as soon as more com-
plicated rules for wiring or growing of a network are considered,

Some network measures

The degree k; of a particular node i of the network is the
number of links associated with it. If links are directed they
either emerge or end at a node, yielding the diction of out- or
in-degree, respectively. The degree distribution p(k) is the
probability for finding a node with degree k in the network. In
(unweighted) networks the degree distribution is discrete and
often reads, p(k) = p(1)e!""q with K > 0 being some charac-
teristic number of links. Apart from the degree distribution,
important measures to characterize network topology are the
clustering coefficient ¢;, and the neighbor connectivity k.
The clustering coefficient measures the probability that two
neighboring nodes of a node i are also neighbors of each other,
and is thus a measure of cliquishness within networks. The
neighbor connectivity is the average degree of all the nearest
neighbors of node i. When plotted as a function of k, a non-
trivial distribution of the average of c allows statements about
hierarchic structures within the network, while k;, serves as a
measure of assortativity.
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the seemingly simple concept of a network can become rather
involved. In particular, in many cases the degree distribution
becomes a power-law, bare of any characteristic scale, which rais-
es associations to critical phenomena and scaling phenomena in
complex systems. This is the reason why these types of networks
are often called complex networks. A further intriguing aspect of
dynamical complex networks is that they can potentially provide
some sort of toy-model for ‘nonergodic’ systems, in the sense that
not all possible states (configurations) are equally probable or
homogeneously populated, and thus can violate a key assumption
for systems described by classical statistical mechanics.

Opver the past two decades the concept of nonextensive statisti-
cal mechanics has been extremely successful in addressing critical
phenomena, complex systems and nonergodic systems [1, 2].
Nonextensive statistical mechanics is a generalization of Boltz-
mann-Gibbs statistical mechanics, where entropy is defined as

s, = 1ol dkbp)l" (1)

q—1

with the g = 1 limit §; = Spe = — [ dkp(k) Inp(k)
1]

where BG stands for Boltzmann-Gibbs. If — in the philosophy of
the maximum entropy principle — one extremizes S, under certain
constraints, the corresponding distribution is the g-exponential
(see box in editorial paper by C. Tsallis and J.P. Boon). Another
sign for the importance and ubiquity of g-exponentials in nature
might be due to the fact that the most general Boltzman factor
for canonical ensembles (extensive) is the g-exponential, as was
recently proved in [3]. Given the above characteristics of networks
and the fact that a vast number of real-world and model networks
show asymptotic power-law degree distributions, it seems almost
obvious to look for a connection between networks and nonex-
tensive statistical physics.

Since the very beginning of the recent modeling efforts of
complex networks it has been noticed that degree distributions
asymptotically follow power-laws [4], or even exactly g-exponen-
tials [5]. The model in [4] describes growing networks with a
so-called preferential attachment rule, meaning that any new
node being added to the system links itself to an already existing
node i in the network with a probability that is proportional to
the degree of node i, i.e. pink o< ki. In [5] this model was extended to
also allow for preferential rewiring. The analytical solution to the
model has a g-exponential as a result, with the nonextensivity
parameter g being fixed uniquely by the model parameters.

However, it has been found that networks exhibiting degree dis-
tributions compatible with g-exponentials are not at all limited to
growing and preferentially organizing networks. Degree distribu-
tions of real-world networks as well as of models of various kinds
seem to exhibit a universality in this respect. In the remainder we
will review a small portion of the variety of networks which poten-
tially have a natural link to non-extensive statistics. Even though
there exists no complete theory yet, there is substantial evidence for
a deep connection of complex networks with the g # 1 instance in
nonextensive statistical mechanics.

Recently in [6] preferential attachment networks have been
embedded in Euclidean space, where the attachment probability for
anewly added node is not only proportional to the degrees of exist-
ing nodes, but also depends on the Euclidean distance between
nodes. The model is realized by setting the linking probability of a
new node to an existing node i to be piink o< ki/r?(o = 0), with r;
being the distance between the new node and node 7 & = 0 corre-
sponds to the model in [4] which has no metrics. In a careful
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A Fig. 1: Snapshot of a non-growing dynamic network with
g-exponential degree distribution for N = 256 nodes and a
linking rate of r = 1, for details see [8,9]. The shown network
is small to make connection patterns visible.

analysis the degree distributions of the resulting networks have
been shown to be g-exponentials with a clear o-dependence of the
nonextensivity parameter ¢. In the large o limit, g approaches one,
i.e,, random networks are recovered in the Boltzmann-Gibbs limit.

In an effort to understand the evolution of socio-economic
networks, in [7] a model was proposed that builds upon [5] but
introduces a rewiring scheme which depends on the internal
network distance between two nodes, i.e., the number of steps
needed to connect the two nodes. The emerging degree distribu-
tions have been subjected to a statistical analysis where the
hypothesis of g-exponentials could not be rejected.

A model for nongrowing networks which was recently put for-
ward in [8] also unambiguously exhibit g-exponential degree
distributions. This model was motivated by interpreting networks
as a certain type of ‘gas’ where upon an (inelastic) collision of two
nodes, links get transfered in analogy to the energy-momentum
transfer in real gases. In this model a fixed number of nodes in an
(undirected) network can ‘merge), i.e., two nodes fuse into one
single node, which keeps the union of links of the two original
nodes; the link connecting the two nodes before the merger is
removed. At the same time a new node is introduced to the system
and is linked randomly to any of the existing nodes in the network
[9]. Due to the nature of this model the number of links is not
strictly conserved — which can be thought of as jumps between
discrete states in some ‘phase space’. The model has been further
generalized to exhibit a distance dependence as in [6], however r;
not being Euclidean but internal distance. Again, the resulting
degree distributions have g-exponential form. In Fig. 1 we show a
snapshot of this type of network pars pro toto for the many mod-
els exhibiting g-exponential degree distributions. The
corresponding (cumulative) degree distribution is shown in Fig. 2
in log-log scale, clearly exhibiting a power-law. Figure 3 shows
g-logarithms of the degree distribution for several values of q. It
is clear from the correlation coefficient of the g-logarithm with
straight lines (inset) that there exists an optimal value of g, which
makes the g-logarithm a linear function in k, showing that the
degree distribution is a g-exponential.
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A quite different approach was taken in [10] where an ensem-
ble interpretation of random networks has been adopted,
motivated by superstatistics [11]. Here it was assumed that the
average connectivity A in random networks is fluctuating
according to a distribution I'1(1), which is sometimes associated
with a ‘hidden-variable’ distribution. In this sense a network
with any degree distribution can be seen as a ‘superposition’ of
random networks with the degree distribution given by

pt) = [ aarin 2

that a power-law functional form of T1(A) leads to degree distrib-
utions of Zipf-Mandelbrot form, p(k)e< (—koi " which is equivalent
to a g-exponential with an argument of k/K- and given the sub-
stitutions, K = (1 - q)ko and g = 1 + 1/7. Very recently a possible
connection between small-world networks and the maximum
Tsallis-entropy principle, as well as to the hidden variable
method [10], has been noticed in [12].

In yet another view of networks from a physicist’s perspective,
networks have recently been treated as statistical systems on a
Hamiltonian basis. It has been shown that these systems show a
phase transition like behavior [13], along which network structure
changes. In the low temperature phase one finds networks of ‘star’
type, meaning that a few nodes are extremely well connected
resulting even in a discontinuous p(k); in the high temperature
phase one finds random networks. Surprisingly, for a special type
of Hamiltonian, networks with g-exponential degree distributions
emerge right in the vicinity of the transition point [14].

While a full theory of how complex networks are connected to
q # 1 statistical mechanics is still missing, it is almost clear that
such a relation should exist. It would not be surprising if an
understanding of this relation would arise from the very nature of
networks, being discrete objects. More specifically, it has been
conjectured for nonextensive systems that the microscopic
dynamics does not fill or cover the space of states (e.g. I'-space
(6N dimensional phase space) for Hamiltonian systems) in a
homogeneous and equi-probable manner [2]. This possibly
makes phase space for nonextensive systems look like a network
itself, in the sense that in a network not all possible positions in
space can be taken, but that microscopic dynamics is restricted

.In [10] it was shown as an exact example,
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onto nodes and links. In this view the basis of nonextensive sys-
tems could be connected to a network like structure of their ‘phase
space’. It would be fantastic if further understanding of network
theory could propel a deep understanding of nonextensive statis-
tical physics, and vice versa, making them co-evolving theories.
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means that the distribution function is a g-exponential; the
slope of the linear function determines K.In this example
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slope Y= 1.19in the previous plot.
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Nonextensive statistical
mechanics :implications
to quantum information

A. K. Rajagopal and R.W. Rendell,
Naval Research Laboratory, Washington, DC

The interactions and correlations among the constituents of many-
body systems are manifested in characteristic physical properties
such as ferromagnetism, superconductivity, etc. A list of some that
have been studied in the last century is given in the Box (see
below). A parallel development in quantum information was
initially slow but over the past two decades progress has been very
rapid. Fundamentally this is another aspect of quantum correla-
tions in composite systems arising from the twin features of the
superposition principle and the tensor product structure of state
space. These features are not utilized in the same manner in quan-
tum many-body physics. In the Box, a corresponding parallel list
with properties of many-body systems is given because there has
been an interplay between the two research efforts and their under-
standing. The basic quantum mechanical principles apply to both
cases except different aspects are utilized because the goals are dif-
ferent in each.

Both areas of investigation are based on a probabilistic founda-
tion with a variational underpinning founded on an “entropy”
maximization, which may be called Quantum Statistical Mechan-
ics [1]. The specific form of the entropy as a functional of the
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density matrix will be made explicit presently. See Table I for def-
initions of density matrix and associated quantities.

The equilibrium properties of the many-body systems are
then given by a maximization of von Neumann entropy subject to
certain constraints such as the average value of the Hamiltonian of
the system - “energy”. This leads to the familiar exponential prob-
abilities of the Boltzmann-Gibbs (BG) form. Any non-
equilibrium properties are studied by a quantum time evolution
equation. Non-equilibrium properties such as the anomalous
relaxation in time are often analyzed with the quantum version
of the Tsallis entropy with an entropic index, q, which leads to
power- law probabilities in contrast to the BG type [2]. (See the
Box in the Introduction of Tsallis and Boon).

In quantum information, the maximum entropy scheme is
not of use because its origins are elsewhere as will be made clear
presently. The evolution is replaced by processing of information
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accomplished by quantum operators, such as unitary or mea-
surement operators, enabling the passage of given initial
information to a known destination. The energy level (band-)
structure of the states plays the central role in determining the
global physical characteristics of the many body system which led
to the Silicon-based classical computer. In this development, the
classical information structure was sufficient in its construction
and operation. In contrast, the quantum information structure
exploits the state function of the many-body system and the
corresponding development of a quantum computer is presently
at an infant stage and it will perhaps be based on quantum optics
or state-space aspects of condensed matter. The Box gives a flavor
of this mutual relation between many-body systems and informa-
tion theory, highlighting the twin aspects of the quantum energy
level structure and the quantum state.

Classical information theory is a description of communicating
information (signals, alphabets, etc. denoted by real numbers x;,
i=1,2,...N) from one place to another using systems governed by
classical physics. It rests on four intuitive ideas: (1) probability
structure of a message source, p(x;); (2) a notion of additive infor-
mation content, I(x;)= -log p(x;), where it is the sum of each if
there are independent sources; (3) use of a binary arithmetic (see
Fig. 1 - yes, no - classical bit), which is sufficient to develop

coding, error correction, etc. associated with transmission and
reception of information, and a unit of information, the classical
bit, log2; and (4) an additive measure of information, which
quantifies average information per symbol, the von Neumann

N
entropy, S = —Z p(xi) log p(xi). When more than one source is

considered, gehelralization of these concepts lead to the notions
of (a) marginal probabilities, (b) conditional probabilities, and
related entropies, and (c) relative entropy which enables compar-
ison of two sources. The above description is for digital sources.
There are also continuous sources (e.g. light) which describe
analog systems. All this changes dramatically when quantum
physics is the underpinning structure. To appreciate this change,
we first display the foundations of quantum theory that subsumes
classical theory (see Table 1 for the relevant definitions).
Quantum theory involves (a) superposition principle, (b)
uncertainty principle, and (c) the system density matrix govern-
ing the probabilistic description of the system. Physical quantities
associated with the system are represented by Hermitian operators
whose average values defined in terms of the system density
matrix give their measured values. The density matrix replaces the
probability of occurrence of events in classical theory. The classi-
cal bit now takes on a more general representation, because in the

A.

Density matrix: 2=, d/i)(il: {a.}. Probabilities: 0< g, <1, Trp= E g =1

quantum description the superposi-
tion principle comes into play. See
Fig. 1, for a pictorial representation of
a qubit. Conceptually these three fea-

B.
In general p'<p

Mixed state: p* < p ; Representation as in A.

Pure state: 0 = p=> Pp= | ‘Px‘PI s |‘}‘) = Pure state of system

tures give a more general description
of the system than the classical theory.
Thus the classical information theory
based on probabilities associated
with signals and the consequent the-
oretical structure defining entropy as

C.
Composite system density matrix: p(A,B)
Marginal density matrices are:

Trsp(A’ B)= P (A)'!; TFAP(A._. B) = (B)

the information measure, algorithms,
coding of information, etc. are all
generalized in the quantum version
with important consequences. The
superposition principle precludes

D.
Tsallis entropy: S, =(q—1) ' Tr{p—p"'}
von Neumann entropy is obtained when q=1:

S(A.B)=—Tr, ,p(A, B)In p(A, B) >0

cloning and deletion of information
and significantly improves the classi-
cal search algorithm. The uncertainty
principle places conditions on mea-
surements of a certain class of

E.

If composite system is uncorrelated i.e., P(A,B) = p(A)® p(B) then
S,(A,B)=S,(A)+S,(B)+ (1-q)S,(A)S,(B) (NONADDITIVE PROPERTY)
For g=1 this gives ADDITIVE PROPERTY for the von Neumann entropy.

physical variables of the system and
when there is more than one signal or
source, gives conditions for “inde-
pendence” or “separability” of the
systems. In fact, classically correlated

F.
Comparison of two systems :
Relative entropy:

K(AIB)=Trp(A)[In p(A) —In p(B)]> 0

Fidelity: F=Tr(p(A)p(B))

signals become generalized to include
entanglement and other nonlocal
features in the quantum context. See
Fig. 2 for a description of these con-
cepts in the simple case of two qubits.

G.

S(A) ==Trp(A)In p(A).

For a pure state of composite system, |‘P(A, B )), marginal density matrices are
p(A) =Tr,|W(A.B){W(A,B)|, p(B)=Tr,|'W(A, B){¥(A.B)| and if this

system is entangled, then the entanglement of formation is given by

More precisely, quantum entangle-
ment implies that the parts do not
determine the whole. This feature
gave rise to dense coding, “tele-
portation” and novel quantum
cryptography that have no classical
counterparts. Grover’s quantum

A Table 1: Quantum Density Matrix Description

search algorithm exploits the super-
position principle and makes the
search faster than the classical version.
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The Shor quantum factorization algo-
rithm is another successful application.
For a detailed exposition, one may con-
sult [3].

The hallmark of quantum physics is
quantum non- locality which often
involves entanglement, whereby distant
systems can exhibit random yet perfect-
ly correlated behavior. A fundamental
problem in quantum information sci-
ence is the characterization of entangled
states and their measurement. Original-
ly this was stated in terms of a violation
of a certain inequality due to Bell by
measuring a sequence of correlations
that could not be explained by any local
realistic model. This violation was taken
to indicate quantum non- locality.
Experimental tests of the Bell inequality
have established this feature of quan-
tum theory. While this violation detects
entanglement, it does not quantify it
nor is it guaranteed to succeed. Werner
defined the separability of states as fol-
lows: if the system density matrix,
p(A,B), of a composite system (AB) (see
Table 1) can be written as a sum of the
products of the density matrices of its
components, pi(A) & pi(B) in the form

p(A,B) = prl )®pi(B),0 < wi <1,
and ZW‘ =1, then the system is separable

Those composite systems for which this
decomposition does not hold are said to
be entangled. A criterion for testing this
property was first stated by Peres: if the
density matrix of the composite state
does not retain its property of positive
semi-definiteness under the action of
time reversal of one of the subsystems,
then the system is entangled. The entan-
glement measure is often stated in terms
of “entropy of formation”, originally
formulated in terms of the von Neu-
mann entropy for pure states given in
Table 1. Since entanglement is due to
intrinsic correlations among the parts
making up a system, it is not obvious
that one could employ an additive
measure for this purpose. This point is
the subject of discussion to this day [4].
An additive measure of a system is
defined by the sum of the correspond-
ing measures of its components (see
Table 1). If the system is entangled, it is

not clear that additive measures such as von Neumann entropy
would be appropriate in general. Anticipating the possibility of a
non-additive feature of entanglement, the Tsallis entropy was
employed to characterize it. This was shown to be more successful
in correctly obtaining the separability criterion of a certain known
state where the von Neumann measure gives the wrong answer [5,
6,7, 8,9]. Table 2 gives a summary of these results. In this Table,
we consider a simple special composite mixed state of two qubits
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The Werner state [8] is a mixed state and is given by

pwiaB)= ¥ Y|+ S5 @ 1y - ) )

Here F is a parameter in the range (1/4, 1) and |‘l")=|1Tl)—|J,T>}N§

Separability conditions for this state for values of F is determined by various methods:

(a) Peres - Horodecki partial transpose: F<05

(b) von Neumann conditional entropy(g=1): F <0.807

(c) Bell inequality: F<078

(d) Tsallis conditional entropy: F<05

s,(4B)=0)

This has been extended to a general 3-parameter Werner state by Tsallis et al [8] and to
the N-dimensional Werner qubit state by Abe [8]. The Peres-Horodecki condition (a) is
known to be exact for two qubits. Thus the non-additive Tsallis approach (d) is found
to be better than the additive von Neumann scheme (b) in all forms of the Werner state
considered [8].
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A Table 2: Comparison of Separability Criteria of the Werner State
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A Fig.2: lllustration of quantum entanglement based on a single two quantum-bit
example. Salient features of pure and mixed state density matrices are also illustrated.

called the Werner state, which is a sum of pure state density matrix
and a density matrix representing noise: (I, ® I,)/4. By noise is
meant that all the four states of this system occur with equal prob-
ability, 1/4. This state has the interesting property of being an
entangled pure state for F=1, but a separable mixed state for cer-
tain values of F. The separability condition is deduced by various
methods and these are compared with the exact result obtained by
the Peres criterion in Table 2.
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Another fundamental issue is the proper discriminating measure
when two systems are under consideration. In classical information
theory, one employs the Kullback — Leibler relative entropy for this
purpose which also has its quantum version. These are also additive
measures and the Tsallis counterparts of these have been put
forward and employed in the quantum context as well [10, 11].
There is promise in future work using the Tsallis approach to
problems arising in quantum information theory, especially in the
areas of quantum algorithms and quantum computing.

There has been some discussion of the thermodynamics of
information, in particular quantum information. Since there are
hints that quantum entanglement may not be additive, and since
the concept of entropy has been introduced into the discussion, an
examination of maximum Tsallis entropy subject to constraints
such as the Bell-Clauser- Horne-Shimony-Holt observable was
studied for purposes of inferring quantum entanglement [5, 6].
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lectroencephalograms (EEG) are brain-signals that provide us
with information about the mean brain electrical activity, as
measured at different sites of the head. EEGs not only provide
insight concerning important characteristics of the brain activity
but also yield clues regarding the underlying associated neural
dynamics. The processing of information by the brain is reflected in
dynamical changes in this electrical activity. The ensuing activity-
variations are found in () time, (i) frequency, and (iii) space. It is
then very important to have theoretical tools able to describe qual-
itative and quantitative variations of these brain-signals in both
time and frequency. Epileptic signals (ES) are specially important
sources of brain information. We concentrate on ES in this article.
The EEG-signal is what mathematicians call a non stationary time-
series (ST). Powerful analytical methods have been developed over
the years to extract information from ST. The brain ST is contami-
nated by another body-signals (called artifacts) due mainly to eye
movements and muscle activity. Artifacts related to muscle con-
tractions are specially troublesome in the case of epileptic seizures
that exhibit rigidity and convulsions (called tonic-clonic seizures).
The troublesome artifacts acquire here very high amplitudes that
contaminate the whole recording. A drastic way of preventing this
contamination is by injecting curare to the patient. The classic work
of this type is that of Gastaut and Boughton (GAB) [1], who
described the characteristic frequency pattern of a tonic-clonic
epileptic seizure (ACES) in patients subjected to muscle relaxation
from curarization and artificial respiration. They found that, after a
short period characterized by phase desynchronization of the brain’
signals, a typical feature appears in the records, baptized by them as
an “epileptic recruiting rhythm” (ERR, at about 10 Hz). Later, as
the seizure ends, they detected a progressive increase of lower
frequencies associated with the convulsive phase. The TCES pro-
ceeds as follows: about 10 s after seizure onset, lower frequencies
(0.5-3.5 Hz) are observed that gradually diminish their activity. The
convulsive activity is associated to generalized polyspike bursts from
muscle-jerks. Very slow irregular activity dominates then the EEG,
accompanied with a gradual frequency increase of up to (3.5 - 12.5
Hz), indicative of the end of the seizure.
In Fig. 1.a we depict a typical EEG signal (sample frequency
@; = 102.4 Hz, for signal acquisition details see Ref. [2]) corre-
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sponding to a TCES. Recordings were performed under video
control in order to have an accurate determination of the differ-
ent stages of the seizure. The seizure starts at 80 s, with a
“discharge” of slow waves superposed by fast ones with lower
amplitude. This discharge lasts approximately 8 s and has a mean
amplitude of 100 4V . Afterwards, the seizure spreads, making the
analysis of the EEG more difficult due to muscle artifacts. Howev-
er, it is possible to establish the beginning of the convulsive phase
at around 125 s, and the end of the seizure at 155 s, where there is
an abrupt decay of the signal’s amplitude. Notice that it is almost
impossible to visually detect the rigidity-to-convulsions (tonic-
clonic) transition.

In the mathematical characterization of these brain electrical
signals, that one regards as a time-series, we follow what is called
a “Wavelet Transform — Information Theory” approach that is
able to extract information form signals like that of Fig. 1. The
basic elements of the Math we used are called wavelet transform
coefficients that we derive from the EEG signal. It was our main
idea that of associating a probability distribution (PD) to this time
series. If one is in possession of a PD, then the branch of mathe-
matics called Information Theory allows one to evaluate specific
quantities, called quantifiers, that contain otherwise inaccessible
information. Thus we go from the “bare”-signal of Fig. 1 to
quantifiers that can tell us a lot about the EEG. We devised three
quantifiers for EEG analysis. For computing these quantifiers we
use another Math tool called “wavelet analysis”. This is a method
which expresses the original signal in terms of what is called a
basis of an space of functions. Wavelets are just an appropriate
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basis, of elements here called y;«(1), and allow for characterizing
the signal by the amplitude-distribution in such a basis [3]. The
wavelet coefficients represent the elements Cj(k) of this distribu-
tion and efficiently provide both full information and a direct
estimation of signal-energies at different frequencies. The brain-
signal under analysis is given by sampled-values & = {s,,n=1, ...,
M} collected using a uniform time grid. The wavelet-expansion is
carried out over all pertinent frequency-resolution levels (denoted
by an index j) and writen as S(¢) = Z}L,N > Ci(k) wii(t), with
N =log,(M). The wavelet coefficient series {Ci(k)} can be inter-
preted as the local residual errors between successive signal-
approximations at scales j and j + 1. It contains information on
the signal &(#) corresponding to the frequencies 2@, < || <
2@..

Since the family {y;i(¢)} is an orthonormal basis for the space
of functions, the concept of energy is linked with the usual
notions derived from Fourier’s theory for such spaces. The wavelet
coefficients are given by Ci(k) =<&, ;> and the signal-energy, at
each resolution level j = -1, ...,-N, will be § = 3 | Ci(k)*. The total
signal-energy can be obtained in the fashion & = 2; < €. Final-
ly, we define the normalized pj-values, which represent the Relative
Wavelet Energy (RWE), p; = &/ Er. This RWE is our first quantifier.
We decided to regard these pj, at different scales, as a probability
distribution for the energy. Clearly, 2.; pj = 1 and the distribution
P = {pj} can be considered as a time-scale energy probability den-
sity that constitutes a convenient tool for detecting and
characterizing specific phenomena in both the time and frequen-
cy planes [2, 4, 5].
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Information theory introduces tools, called entropic information
measures, that provide useful criteria for analyzing and comparing
different probability distributions. In looking for degrees of “disor-
der” in our brain-signal, we devised a math-tool, our second
quantifier, that we call a Generalized Escort-Tsallis Entropy (GWS)

[4]. It is written as
] } / sy (1)

—
(g-1)

5" is a normalization constant that enforces the convenient
inequalities 0 < H!“'< 1, that simplify the analysis to be performed.

The GWS is a measure of the degree of order/disorder of the
signal and thus yields useful information concerning the underlying
dynamical brain-process associated with the signal. Indeed, a very

HO[P] =

=1
1 — Z ( 2j )”q

j=—N

ordered process can be represented by a periodic mono-frequency
signal (signal with a narrow band spectrum). A wavelet representa-
tion of such a signal will be resolved at just one unique wavelet
resolution level j, i.e., all relative wavelet energies will be (almost) zero
except at the wavelet resolution level j which includes the represen-
tative signal’s frequency. For this special level, the relative wavelet
energy will be (in our chosen energy units) almost equal to unity. As
a consequence, the GWS will acquire a very small, vanishing value.
A signal generated by a totally random or chaotic process can be
taken as the representative of a very disordered behavior. This kind
of signal will have a wavelet representation with significant contri-
butions coming from all frequency bands. Moreover, one could
expect that all contributions will be of the same order. Consequent-
ly, the relative wavelet energy will be almost equal at all resolutions
levels, and the GWS will acquire its maximum possible value.
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A Fig. 2: Temporal evolution of two quantifiers a) the normalized escort-Tsallis wavelet entropy (GWS) and b) Jensen escort-Tsallis
wavelet statistical complexity measure (JGWC), corresponding to an EEG noise-free signal (see caption Fig. 1).The behaviour of the
GWS clearly varies with g (see Figs. 2.a) in the temporal domain. During the pre- and post-ictal stages, these normalized GWS-values
acquire a rather regular, constant behaviour, with a dispersion that diminishes as g grows. For all g > 1, the normalized GWS (JGWC)
values during the ictal stage are much smaller (greater) than those pertaining to the pre-ictal stage. This difference is better
appreciated in the time range corresponding to the “epileptic recruiting rhythm” (represented by a shadowed area in the figure).
These features suggest that the escort-Tsallis entropy measure constitutes the appropriate tool for characterizing the tonic and
clonic stages.The minimum absolute value of the normalized entropy is to be found in the vicinity of ~ 125 s,in agreement with the
medical diagnosis: in that neighbourhood one encounters the tonic-clonic “phase transition” ¢) Ratio between the temporal mean
value corresponding to ictal and pre-ictal epochs as function of the parameter g for the normalized escort-Tsallis wavelet entropy
(GWS).d) Same for Jensen-escort-Tsallis wavelet statistical complexity measure (JGWC).This behaviour clearly illustrates the
superiority of the g > 1 techniques that magnify differences between ictal and pre-ictal stages, critical for clinical purposes.
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Ascertaining the degree of unpredictability and randomness of
a system is not automatically tantamount to adequately grasping
all the correlational structures that may be present, i.e., to be in a
position to capture the relationship between the components of
the pertinent physical system (here, the brain) [5, 6, 7]. Random-
ness, on the one hand, and structural correlations on the other
one, are not totally independent aspects of the accompanying
physical description. Certainly, the opposite extremes of perfect
order and maximal randomness possess no structure to speak of
(zero complexity). In between these two special instances a wide
range of possible degrees of physical structure exists that should
be reflected in the features of the underlying probability distribu-
tion P (here, that for the EEG). A new notion has been recently
introduced in this respect, called “complexity”. Complexity is a
measure of off-equilibrium “order”. It refers to non-equilibrium
structures that arise spontaneously in certain situations. This
type of “order” is not the one associated, for instance, with crystal
structures, for which the entropy is very small. Biological life is a
typical example of the kind of “new” order one has in mind here,
associated with relatively large entropic values.

We adopt the following functional form for the “statistical
complexity measure” (SCM) introduced by Lopez-Ruiz, Mancine
and Calbet [7] for a given probability distribution P:

C[P] = H[P]-Q[P], 2

where Q stands for the so-called “disequilibrium” and H (defined
above) represent the amount of “disorder”. The quantity
Q[P] = Qo - D[P, P.] is defined as a distance from the uniform
distribution P, among the accessible states of the system, and Qo
is a normalization constant (0 < Q < 1). Q[P] tells us just “how
far” our P is located (in this space) from the uniform distribution
P.. The disequilibrium Q would reflect on the systems’s “architec-
ture”, being different from zero if there exist “privileged”, or
“more likely” states among the accessible ones. Here we choose
D[P, P.] as the Jensen-escort-Tsallis divergence [8] given by

1 P+P, o P+ P,
= ~ KO [P 'T} + = K@ [P‘ 2 ] 3)

D|P,P)

2

where K [P1|P,] represent the g-Kullback escort-Tsallis entropy
of P, with respect to P, (both discrete distributions) given by

G PP 1 X Jf-n (IJ?.I): o i (.”:',I')“q 1=e
KRR = o0y JZ| [.-111’1_]"' H A[P] } ~ | AR (4)

and A[P] = 2, (pj)". The corresponding Jensen-escort-Tsallis
wavelet statistical complexity measure (JGWC), C{?is in this way
obtained if we consider for the complexity evaluation (Egs. (2) to
(4)) that distribution P given by the RWE. The JGWC is our third
quantifier.

For EEG-work six frequency bands are important for an appro-
priate wavelet analysis [3]. We denote these 6 band-resolution
levels by Bj (|j| = 1, ..., 6), and proceed as follows in the evalua-
tion of the three quantifiers that we have introduced above:
RWE, GWS and JGWC, we ignore the contributions from the B,
and B, bands (> 12.8 Hz) that contain high frequency artifacts
related to muscular activity that blur the EEG [2]. Once the high
frequency artifacts are eliminated, we can analyze the time evolu-
tion of the above listed three wavelet quantifiers for the
“remaining” signal. For this purpose the signal is divided into
epochs of lengths L = 2.5 s each (M = 256 data).

Figure 1.b displays the quantifier RWE corresponding to the EEG
signal (Fig. 1.a) without contaminant artifact-contributions (B3
to Be). (The following, detailed description of the signal-analysis
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can be omitted in a first reading.) We see that the initial (called
pre-ictal) phase is characterized by a dominance of low rhythms
(pre-ictal: [Bs + Bs] ~ 50%). The seizure starts at 80 s with a
discharge of slow waves superimposed on low voltage fast activi-
ty. This discharge lasts approximately 8 s and produces a marked
“activity-rise” in the frequency bands B5 and B6, which reaches
80% of the RWE. Starting at 90 s, the low frequency activity, rep-
resented in our analysis by Bs and B, decreases abruptly to relative
values lower than 10%, while the other frequency bands become
more important. We also observe in Fig. 1.b that the start of the
convulsive (clonic) phase is correlated with increased activity in
the B, frequency band. After 140 s, when clonic discharges become
intermittent, the Bs activity rises up again till the end of the
seizure, when the Bg frequency activity also increases in very rapid
fashion and both frequency bands become clearly dominant. The
Bs and Bs frequency bands maintain this predominance through-
out the post-ictal phase. We conclude from this example that the
seizure is dominated by the middle frequency bands Bs and B,
(12.8-3.2 Hz), with a corresponding abrupt activity decrease in the
low frequency bands Bs and Bg (3.2-0.8 Hz). Clearly, this behav-
ior can be associated with the above described epileptic recruiting
rhythm (ERR) [1] (shadowed area in the figure). We emphasize
the fact that our results were obtained without the use of curare or
any filtering method.

The other quantifiers, GWS and JGWC, as a function of time,
are depicted in Figs. 2.a and 2.b. In their evaluation we ignore
contributions due to contaminant high frequency bands (B; and
B,). The behavior of the GWS clearly varies with g (see Figs. 2.a) in
the temporal domain. During the pre- and post-crisis (ictal) stages,
these normalized GWS values acquire a rather regular, constant
behavior, with a dispersion that diminishes as the Tsallis’ g grows (see
Figs. 2.a and 2.c). For all q > 1, the normalized GWS values during
the ictal stage are much smaller than those pertaining to the
pre-ictal stage. This difference is better appreciated in the time
range corresponding to the ERR (represented by a shadowed area
in the figure). One may therefore suggest that the escort-Tsallis
entropy measure, that we use here, constitutes the appropriate tool
for characterizing the tonic and clonic stages of the epileptic crisis.

The minimum absolute value of the normalized entropy is to
be found in the vicinity of ~ 125 s, in agreement with the medical
diagnosis: in that neighbourhood one encounters the tonic-clonic
“phase transition”, that one can detect by looking at the patient
but not by inspection of the bare record of Fig. 1. Two relative
maxima are observed at ~145 s and ~ 155 s. As stated above,
these times are associated with the ends of (i) the ERR and (i7)
the epileptic seizure, respectively. Changes in the EEG series
around 125 s (transition from tonic to clonic stage) are the result
of a mechanism entirely different from the one that produces vari-
ations at 145 and 155 s (neuronal “fatigue”, a decrease of the
neuronal firing rate with preponderance of inhibition factors, is
largely responsible for originating the end of the seizure).

Our JGWC-quantifier numerical results also depend upon the
Tsallis’ g. In fact, we see from Figs. 2.b and 2.d that the JGWS yields
values with a dispersion that diminishes as q grows (in particular
for the pre- and post-ictal periods). This behaviour can be clearly
appreciated in Figs. 2.c and 2.d, where the ratio between the tem-
poral mean values corresponding to ictal and pre-ictal epochs as
function of the parameter q for GWS and JGWC is shown. That is
for g < 1 the fluctuations in these quantifiers increase and for g > 1
decrease, specially in pre-ictal period. This fact (7) emphasizes the
difference between the mean values corresponding to pre-ictal and
ictal stages (increase of statistical significance); (i) clearly illustrates
the superiority of the g > 1 Tsallis-techniques that magnify such
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differences, that are critical for clinical purposes. However, the
mean JGWS values are significatively larger in the ictal than in the
pre- and post-ictal epochs for all g > 1.

The present article described informational tools derived from
the orthogonal discrete wavelet transform and their application to
the analysis of brain electrical signals. The quantifier (relative
wavelet energy) RWE provides information concerning the relative
energy associated with different frequency bands that are to be
found in the EEG and enables one to ascertain their corresponding
degree of importance. Our second quantifier, normalized wavelet
entropy (GWS), carries information about the degree of order/dis-
order associated with a multi-frequency signal response. Finally,
our third quantifier, the statistical wavelet complexity (JGWC),
provides us with a measure that reflects the intricate structures hid-
den in the brain-dynamics.

In particular, it becomes clear that the ERR behavior reported by
Gastaut and Broughton [1] for generalized TCES is accurately
described by the RWE quantifier. Moreover, the reported study
does not require the use of curare or of digital filtering. In addition,
a significant decrease in the entropy was observed in the recruit-
ment epoch, indicating a more rhythmic and ordered behavior of
the EEG signal, compatible with a dynamical process of synchro-
nization in the brain activity. In addition the recruiting phase also
exhibits larger values of statistical complexity.

It is well established that an EEG is directly proportional to the
local field potential recorded by electrodes on the brain’s surface.
Furthermore, one single EEG electrode placed on the scalp records
the aggregate electrical activity from up to 6 cm’ of the brain surface,
and hence from many millions of neurons. With such large num-
bers, is seems quite natural to model the neocortex as a continuous
sheet of neurons (neuronal matter) whose activity varies with time.
Taking into account the available results for (7) the chaoticity index
(the largest Lyapunov exponent with stationary constraints
removed) as a function of time and (3i) the largest Lyapunov expo-
nent for selected portions of the EEG signal, one can confidently
assert that a chaotic behavior can be associated with the whole EEG
signal. This chaoticity becomes smaller during the recruiting phase
[2]. As pointed out by many authors (see for instance [9]), the
coexistence of chaos with ordering and increasing complexity for
extended system is a manifestation of self-organization. We can thus
suggest, on the basis of experimental EEG data and using appropri-
ate statistical tools, that in the case of tonic-clonic epileptic seizures,
the epileptic focus triggers a self-organized brain state characterized
by both order and maximal complexity.
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erhaps one of the most vivid and richest examples of the

dynamics of a complex system at work is the behavior of finan-
cial markets. The price formation process of a publicly traded
asset is clearly the product of a multitude of evasive interactions.
Individuals around the globe post orders to buy or sell a particular
stock at a particular price. Transactions are cleared at a certain price
at a given time, either by passing through the hands of a specialist
on the trading floor, or automatically on the many electronic
markets which have flourished along with technological advances
over the past few years (Fig. 1). Apart from fundamental properties
of the company whose stock is being traded, factors such as sup-
ply and demand clearly must affect the price of stocks, as well as
general trends in the particular industry in question. Stock specif-
ic events, such as mergers and acquisitions, have a big impact, as do
world events, such as wars, terrorist attacks and natural disasters.

Time series of financial data exhibit highly nontrivial statisti-
cal properties. What is quite fascinating is that many of these
anomalous properties appear to be universal, in the sense that
they are present in a variety of different asset classes, ranging for
example from commodities such as wheat or oil, to currencies and
individual stocks. Furthermore they are present across the geo-
graphical borders, and can be observed among others in US,
European and Japanese markets.

Finding a somewhat realistic model of price variations that can
capture the spectrum of interesting statistical features inherent in
real data is a challenging task, important for many real-world
reasons, such as risk control, the development of trading strategies,
option pricing and the pricing of credit risk to name a few. Bache-
lier’s random walk model in 1900 was the first attempt of a
mathematical model of price variations. While a century ago this
Gaussian stochastic process was state-of-the-art, and indeed lies at
the bottom of the celebrated Black-Scholes option pricing formal-
ism, we now know Figure 2: The empirical distribution of daily
returns from the stocks comprising the SP 100 (red) is fit very well
by a g-Gaussian with g = 1.4 (blue). that it is way too simple to
describe the properties of real data. In fact, during the past decade,
there has been an increasing and widespread access to data extract-
ed from financial markets. This includes for example every single
trade and quote of all stocks traded on the New York Stock
Exchange, records from various electronic markets, the entire order
book data from the London stock exchange, to name just a few
sources. These vast amounts of historical stock price data have
helped establish a variety of so-called stylized facts [1, 2], which can
be seen as statistical signatures, of financial data.

The best known stylized fact is perhaps the distributions of
returns (defined as logarithmic relative price changes). On time
scales ranging from minutes to weeks these have fat tails, exhibiting
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power-law decay and are modeled quite well by the Tsallis or
Student form ' (Fig. 2).As the time-scale over which one calculates
the price changes increases to months or years, the distribution
does become closer to a Gaussian. In addition, there is a long range
memory in volatility fluctuations, evident because the autocorrela-
tion of the volatility decays only slowly as a power law. This leads to
bursts of higher or lower volatility in the time series of returns, a
phenomenon also referred to as volatility clustering, and further-
more the distribution of the instantaneous volatility is close to
log-normal. Also, there are certain asymmetric correlations in that
large past price changes imply large future volatilities, an effect
called leverage. In addition to these stylized facts, are also more
subtle ones which have been elucidated in recent years. Examples
are multifractal scaling, a financial analogue of the Omori law for
earthquakes (in other words, large volatility shocks tend to be
followed by after-shocks decaying in magnitude according to a
power law), as well as the statistical asymmetry under time rever-
sal, implying the rather obvious fact (which however is not
present in most models of price fluctuations!) that financial time
series differentiate the past from the future.

Several different models have been proposed [3] in an attempt
to capture fat tails and volatility clustering which don’t exist in
the Gaussian Bachelier model. Popular approaches include Levy
processes, which induce jumps and thus fat tails on short time-
scales, but convolve too quickly to the Gaussian distribution as the
time-scale increases and do not present volatility clustering. Sto-
chastic volatility models, such as the Heston model where the
volatility is assumed to follow its own mean-reverting stochastic
process, reproduce fat tails, but not the long memory observed in
the data. The same holds true for the simplest of Engle’s Nobel
prize winning GARCH models in which the volatility is essential-
ly an autoregressive function of past returns. Multifractal
stochastic volatility models (similar to cascade models of turbu-
lent flow) are another promising candidate (cf [2]), reproducing
many of the stylized facts, lacking mainly in that they are strictly
time reversal symmetric in contrast to empirical evidence.

In addition, most of the above mentioned models are difficult
if not impossible to deal with analytically. Analytic tractability is
desirable for reasons such as efficiently calculating the fair price
of options or other financial derivatives which in their own right
are traded globally in high volumes. They fill important financial
functions with respect to hedging and risk control, as well as offer
purely speculative opportunities. In short, options are financial
instruments which depend in some contingent fashion on the
underlying stock or other asset class. The simplest example is
perhaps the European call option. This is the right (not obliga-
tion) to buy a stock at a certain price (called the strike) at a certain
time (called the expiration) in the future. Contracts similar to
options were exploited already by the Romans and story has it that
Thales, the Greek mathematician, used call options on olives to
make a huge profit when he had reason to believe that the harvest
would be particularly good. In Holland in the 1600s, tulip options
were traded quite a bit by speculators prior to the famous tulip
bubble. But it wasn’t until 1974 that the fair price of options could
be calculated somewhat reliably with the publication of the
Nobel-prize winning Black-Scholes formula. This is still the most
widely used option pricing model, not because of its accuracy
(since it is based on a Gaussian model for stock returns which, as

' The Tsallis distribution (also referred to as a q-Gaussian) is equivalent
to the Student distribution whenever q is a rational of the form (3 +
n)=(1+ n), where n is a positive integer denoting the number of degrees
of freedom.
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A Fig.1: A typical electronic trading screen. Here, live quotes
on options are fed in from the market and the trader can
execute electronically.

we discussed above, is unrealistic) but rather due to its mathe-
matical tractability (which exists due to the same Gaussian
assumptions). In fact, an impressive school of mathematical
finance has been developed over the past three decades, and is
based largely on notions stemming from the famous Black-
Scholes paradigm.

Because real stock returns exhibit fat tails, yet the Black-Scholes
pricing formula is based on a Gaussian distribution for returns,
the probability that the stock price will expire at strikes far from its
current price will be underestimated. Traders seem to correct for
this intuitively; for the Black-Scholes model to match empirical
option prices, higher volatilities must be used the farther away
the strike price is from the current stock price value. A plot of
these Black-Scholes implied volatilities as a function of the strike
price is thus not constant but instead most typically a convex
shape, often referred to as the volatility smile. This way of repre-
senting option prices in terms of the Black-Scholes volatility is so
widely used that prices are often quoted just in terms of this quan-
tity, most often referred to simply as the vol.
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A Fig.2: The empirical distribution of daily returns from the
stocks comprising the SP 100 (red) is fit very well by a g-
Gaussian with g = 1.4 (blue).
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A Fig.3: Theoretical implied Black-Scholes volatilities from
the g = 1.4 model (triangles) match empirical ones (circles)
very well, across all strikes and for different times to
expiration.

From all that has been said up to now, it is really quite clear that
the true model of stock price fluctuations has many challenging
statistics to reproduce, in addition to correctly pricing derivative
instruments. Furthermore, it would be desirable that the mecha-
nisms of such a model are somewhat intuitive. With these goals
in mind, the field of nonextensive statistical mechanics has made
some progress in recent years although of course there is still a
long way to go both within and beyond this framework.

As already mentioned in passing, returns (once demeaned and
normalized by their standard deviation) have a distribution that is
very well fit by g-Gaussians with q = 1.4 [4], only slowly becoming
Gaussian (q — 1) as the time scale approaches months or years.
Another interesting statistic which can be modeled within the
nonextensive framework, is the distribution of volumes, defined as
the number of shares traded. A g-exponential multiplied by a
simple power of the volume presents power laws at both high and
low volumes and fits very well to the data [4]. These results are
encouraging, albeit they are macroscopic descriptions of the data
and a dynamical description of the underlying processes is of course
desirable. For the volumes, such a model was recently proposed. For
stock prices, a class of models that has had some success in option
pricing was introduced a few years ago [5], based upon a statistical
feedback process. Recently, that model was extended to incorpo-
rate memory over multiple time-scales [6] (recovering a class of
long-ranged GARCH models [7]) and seems to reproduce most of
the stylized facts of financial time series. Other interesting models
related to the nonextensive thermostatistics include an ARCH
process with random noise distributed according to a g-Gaussian as
well as some state-dependent additive-multiplicative processes [8].
These models do capture the distribution of returns, but not nec-
essarily the empirical temporal dynamics and correlations.

In the statistical feedback model, price fluctuations are assumed
to evolve such that the Tsallis entropy is maximized. This leads to
an instantaneous volatility which is proportional to a power of the
probability of the most recent price: It is large when price moves
are exceptionally large (or rare); conversely, the volatility is small-
er if the price moves are more moderate (or common). This
mechanism is an attempt to model the collective behavior of mar-
ket players. The statistical feedback tries to reflect market
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sentiment. Mathematically, it leads to a non-linear diffusion equa-
tion for the price. Exact time-dependent solutions to this equation
can be found resulting in a Tsallis distribution for price changes at
all times, and volatility clustering is also present. The entropic
index g which characterizes the resulting distribution depends on
the power of the statistical feedback term. If g = 1, the power
vanishes so there is no statistical feedback and the standard Gauss-
ian model is recovered. If g > 1, the power is negative and fat tails
are present. This model has been quite successful for the purpose
of option pricing, again largely due to the fact that one can actu-
ally calculate a lot of things analytically, and in particular one
obtains closed-form solutions for European options.

Since a value of g = 1.4 nicely fits real returns over short to
intermediate time horizons (corresponding to 4 degrees of freedom
with the Student formulation), this model is clearly more realistic
than the standard Gaussian model. Using that particular value of g
as calibrated from the historical returns distribution, fair prices of
options can be calculated easily and compared with empirical trad-
ed option prices, exhibiting a very good agreement. In particular,
while the Black-Scholes equation must use a different value the
volatility for each value if the option strike price in order to repro-
duce theoretical values which match empirical ones, the g = 1.4
model uses just one value of the volatility parameter across all
strikes. One can calculate the Black-Scholes implied volatilities cor-
responding to the theoretical values based on the g = 1.4 model,
and a comparison of with the volatility smile observed in the mar-
ket will reflect how closely the g = 1.4 model fits real prices (Fig. 3).

Although quite successful, this model is not entirely realistic.
The main reason is that there is one single characteristic time in
that model, and in particular the effective volatility at each time is
related to the conditional probability of observing an outcome of
the process at time t given what was observed at time t = 0. For
option pricing this is perfectly reasonable; one is interested in the
probability of the price reaching a certain value at some time in
the future, based entirely on one’s knowledge now. But this is a
shortcoming as a model of real stock returns; in real markets,
traders drive the price of the stock based on their own trading
horizon. There are traders who react to each tick the stock makes,
ranging to those reacting to what they believe is relevant on the
horizon of a year or more, and of course, there is the entire spec-
trum in-between. Therefore, an optimal model of real price
movements should attempt to capture this existence of multiple
time-scales and long-range memory.

Indeed, by including a kind of statistical feedback over multiple
timescales a model is obtained which seems to account for most
stylized facts of financial time series (Fig. 4). The distribution of
returns are fit well by Tsallis-Student distributions. As the time
horizon of returns increase, the distribution approaches Gauss-
ian in the same way as empirical data. Long range volatility
clustering is present, with a decay that matches real data. The dis-
tribution of instantaneous volatility is close to log normal. Subtle
effects like the multifractal spectrum and Omori analogue are
reproduced. In particular, the time-reversal asymmetry is inher-
ent. Although some of these statistics can be calculated
analytically, most are obtained through numerical simulation. In
principle, the model can be used for option pricing via Monte-
Carlo simulations, but analytic option pricing formulae would be
very welcome. Obtaining these is still an open problem.

A final interesting remark on the implications of this model is
that the parameters which calibrate to empirical data put the
model close to an instability. This suggests that the dynamics of
financial markets are operating on the brink of non-stationarity.
In fact, this mathematically perhaps undesirable property is
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philosophically quite desirable; in reality, financial markets indeed
appear only quasi-stationary and as we have seen historically, they
can completely break down and crash. Another implication of the
model is that it predicts a large correlation between the present
volatility and past price changes, which was verified empirically.
This questions the efficient market hypothesis which states that all
information relevant to the stock is immediately absorbed and
reflected in the price and that the past price history can have no
influence on investor behavior. The long-memory volatility model
states otherwise however.

To bring an analogue to physics, this fact is in a sense akin to
the notion that Boltzmann-Gibbs statistical mechanics works well
for systems with short-range interactions and short-term memo-
ry. If long-range interactions or long-memory is present, one
must go beyond the standard framework. In a similar fashion,
the long-memory in financial markets forces us beyond the stan-
dard paradigm and we must perhaps rethink some very
well-established ideas in a new light.

References
[1] ] V. Plerou, P. Gopikrishnan, L.A. Amaral, M. Meyer, H.E. Stanley,
Phys. Rev. E 60 6519 (1999);

[2] J.P. Bouchaud and M. Potters, Theory of Financial Risks and Deriva-
tive Pricing, Cambridge University Press, 2004.

[3] For reference see e.g. J. Hull, Futures, Options and other Financial
Derivatives, Prentice Hall, 2004.

[4] Cf. M. Gell-Mann and C. Tsallis, Nonextensive Entropy - Interdiscipli-
nary Applications, Oxford University Press, NY, 2004.

[5] L. Borland, Quantitative Finance 2, 415-431, (2002).

[6] L. Borland and J.P. Bouchaud, On a multi-timescale statistical feed-
back model for volatility fluctuations, physics/0507073 (2005).

[7] ] G. Zumbach, P. Lynch, Quantitative Finance, 3, 320, (2003).

[8] S.M. Duarte Quieros, C. Anteneodo, C. Tsallis, Power-law distribu-
tions in economics: a nonextensive statistical approach, in Noise and
Fluctuations in Econophysics and Finance, eds. D. Abbot,

J.-P. Bouchaud, X. Gabaix and J.L. McCauley, Proc. Of SPIE 5848,
151 (SPIE, Bellingam, WA 2005). [physics/0503024].

Simulation
E : -
2
L]
[
SFP 500
I I .
0 2000 4000 6000 8000 10000
Time

A Fig.4: A time series of returns simulated with the long-
memory multiple time-scale feedback model (top) and the
daily returns since 1965 of the SP 500.The simulated series
reproduces most of the stylized facts of the real data.

2006 Sponsored Conferences

FEATURES

2006 Europhysics Conferences

Atmospheric Science Conference

8-12 May 2006 - Frascati, Italy

Contact: Prof. Claus Zehner, ESA/ESRIN,

Via Galileo Galilei, CP 64 « [T-00044 Frascati, Italy
Tel: +39 06 94180 544 - Fax: +39 06 94180 552
Email: czehner@esa.int

Website: http://earth.esa.int/atmos2006

18" European Conference on Atomic and Molecular
Physics in lonized Gases « ESCAMPIG-18

12-16 July 2006 - Lecce, Italy

Contact: M.Cacciatore, CNR-IMIP c/o Department of Chemistry
University of Bari « IT-70126 Bari, Italy

Tel: +39 08 05442101 - Fax: +39 080 5442024

Email: mario.cacciatore@ba.imip.cnr.it

Website: http://escampig18.ba.imip.cnr.it

GIREP 2006 Modeling in Physics and Physics Education
20 -26 August 2006 - Amsterdam, The Netherlands
Contact: Prof. Ton Ellermeijer,

Amstel Institut, Kruislaan 404

NL-1098 SM Amsterdam, The Netherlands

Tel: +31 20 525 5963 - Fax: +31 20 525 5866

Email: ellermei@science.uva.nl

Website: www.girep2006.nl

European XRay Spectrometry Conference - EXRS2006
19 -23 June 2006 - Paris, France

Contact: EXRS 2006 Secretariat

Laboratoire National Henri Becquerel, CEA Saclay
F-91191 Gif-sur-Yvette, France

Fax: +33 1 69 08 26 19 - Email: exrs2006@cea.fr
or Dr. Alexandre Simionovici

ENS-Lyon, 46 allée d'ltalie - 69007 Lyon, France,
Tel: +33 47272 86 97 « Fax: +33 47272 86 77
Email: alexandre.simionovici@ens-lyon.fr
Website: www.nucleide.org/exrs2006

2nd International Workshop on Physics and
Technology of Thin Films « IWTF2

26 -30 June 2006 - Prague, Czech Republic
Contact: Dr. Zdenek Chvoj,

Institute of Physics AV CR, Na Slovance 2

CZ-182 21 Praha 6, Czech Republic

Tel: +420 220 318 530 « Fax: +420 233 343 184
Email: chvoj@fzu.cz

Website: www.fzu.cz/activities/workshops/iwtf2

10th International Conference on the Structure of
Non-Crystalline Materials - NCM10

18-22 September, 2006 - Praha, Czech Republic
Contact: Prof. Ladislav Cervinka,

Chairman of the NCM10 Conference,

Institute of Physics,

Academy of Sciences of the Czech Republic, Strizkovska 78
CZ-180 00 Praha 8 - Liben, Czech Republic

Tel: +420-28484 2448 - Fax: +420-28484 2446

Email: L.Cervinka@icaris.cz

Website: www.icaris.info/NCM10

europhysics news NOVEMBER/DECEMBER 2005

231

features



2 M. Gell-Mann receiving the Einstein medal at the opening ceremony 5 The magnetic cannon of Europhysics Fun

1 J.P. Ansermet, M.C.E. Huber, C. Rossel and Ingrid Kissling-Naf 4 The editors: G. Morrisson and Claude Sébenne at work
3 World Year of Physicss 2005 flag floats over Bern 6 The main building at the University of Bern



7 S.Bagayer and R. Apanasevitch at the Council 2005 dinner
8 P. Melville at the Jungfraujoch -
9 The past and present President: M.C.E. Huber and O. Poulsen




EPS DIRECTORY 05/06

SECRETARIATS

Mulhouse

European Physical Society

6 rue des Fréres Lumiere < BP 2136
FR-68060 Mulhouse Cedex, France

TEL/FAX +33 389 329 440/ +33 389 329 449

Secretary General
David Lee EMAIL d.lee@eps.org

Administrative Secretary
Sylvie Loskill EMAIL s.loskill@eps.org

Conferences
Patricia Helfenstein EMAIL p.helfenstein@eps.org
Opbhelia Fornari EMAIL o.fornari@eps.org

Graphic Designer
Xavier de Araujo EMAIL designer@europhysnet.org

Webmaster/Technician
Ahmed Ouarab EMAIL a.ouarab@eps.org

Accountant
Pascaline Padovani EMAIL p.padovani@eps.org

Budapest

Maria Lazar

Nador U.7

HU-1051 Budapest, Hungary

TEL/FAX +36 13173510/ +36 13176 817
EMAIL mlazar@office.mta.hu

EDP SCIENCES

Advertising & Production Manager
Agnes Henri

EDP Sciences

17 avenue du Hoggar - BP 112

PA de Courtabeeuf

FR-91944 Les Ulis Cedex A, France

TEL/FAX +33 169 187 575/ +33 169 288 491
EMAIL henri@edpsciences.org

HONORARY MEMBERS

H. de Waard, Groningen, Netherlands

S.F. Edwards, Cambridge, United Kingdom
J. Friedel, Orsay, France

E. Heer, Geneva, Switzerland

L.E.F. Néel, Meudon, France

P. Noziéres, Grenoble, France

A. Zichichi, Lausanne, Switzerland

PAST PRESIDENTS

2003-05 M.C.E. Huber, Switzerland
2001-03 M. Ducloy, France

1999-01  A.Wolfendale, United Kingdom
1997-99 D. Weaire, Ireland

1995-97 H. Schopper, CERN, Germany
1993-95 N. Kro6, Hungary

1991-93 M. Jacob, CERN, France
1988-91 R.A. Ricci, Italy

1986-88  W.Buckel, Germany

1984-86 G.H. Stafford, United Kingdom
1982-84 ). Friedel, France

1980-82 A.R. Mackintosh, Denmark
1978-80  A.Zichichi, Italy

1976-78 I. Ursu, Romania

1972-76  H.B.G. Casimir, Netherlands
1970-72 E. Rudberg, Sweden

1968-70  G.Bernadini, Italy

234

COUNCIL

Individual Members Council Delegates
M. Benedict

University of Szeged

Tisza . krt. 84-86

HU-6720 Szeged, Hungary

TEL/FAX +36 62 544 368

EMAIL benedict@physx.u-szeged.hu

V. Malka

Lab.d'Optique Appliquée (LOA) - Ecole Polytechnique
Chemin de la huniere

FR-91761 Palaiseau cedex

TEL/FAX +33 169319903 / +33 169 319 996

EMAIL victor.malka@ensta.fr

R. Menzel

Universitaet Potsdam - Institut fuer Physik

Am Neuen Palais 10

DE-14469 Potsdam, Germany

TEL/FAX +493319771026/+493 319771 134
EMAIL menzel@rz.uni-potsdam.de

F. Schwabl

Technische Universitat Miinchen - Physik Department
james-franck-str.

DE-85747 Garching, Germany

TEL/FAX +49 8 928 912 361/ +49 8 928 914 641

EMAIL schwabl@ph.tum.de

F.Vedel

Université De Provence, PIIM

UMR 6633 / CNRS-UAM1 / EQUIPE CIML
Centre de Saint-Jerome Case C21

FR-13397 Marseille Cedex 20, France
TEL/FAX +33 491 288 145 / +33 491 288 745
EMAIL fernande.vedel@up.univ-mrs.fr

Associate Members Delegates

C.J. Carlile

Directeur

Institut Laue Langevin

6, rue Jules Horowitz - BP 156

FR-38042, Grenoble Cedex, France

TEL/FAX +33 476 207 100 / +33 476 961 195
EMAIL carlile@ill.fr

E. Elsen

DESY

Notkestr.85

DE-22603 Hamburg, Germany

TEL/FAX +49 4 089 982 565 / +49 4 089 983 093
EMAIL eckhard.elsen@desy.de

F. Gianotti

CERN - Physics Department
CH-1211 Geneva 23, Switzerland
TEL/FAX +41 227 678 965

EMAIL fabiola.gianotti@cern.ch

J.A.Hertz

NORDITA

Blegdamsvej 17

DK-2100 Copenhagen, Denmark

TEL/FAX +45 35 325 236 / +45 35 389 157
EMAIL hertz@nordita.dk

F. Sette

European Synchrotron Radiation Facility (ESRF)
Director of research

6 rue Jules Horowitz - BP 220

FR-38043 Grenoble Cedex, France

TEL/FAX +33 476 882 013 / +33 476 882 160
EMAIL sette@esrf.fr

EXECUTIVE COMMITTEE

President

0. Poulsen

Engineering College of Aarhus

Dalgas avenue 2

DK- 8000 Aarhus C, Denmark

TEL/FAX +45 87 302 600 / +45 21 212 644
EMAIL opo@iha.dk

Vice-President

M.C.E. Huber

Laboratory for Astrophysics

Paul Scherrer Institut

CH- 5232 Villigen PSI, Switzerland
TEL/FAX +41 563 103 595

EMAIL mceh@bluewin.ch

Secretary

P. H. Melville

The Institute of Physics - IOP

76 Portland Place

UK-W1B 1NT, London, United Kingdom
TEL/FAX +44 2 074 704 841 / +44 2 074 704 848
EMAIL peter.melville@iop.org

Treasurer

M. Allegrini

Universita di Pisa

Dipartimento di Fisica

Via F.Buonarroti, 2

IT-56127 Pisa, Italy

TEL/FAX +39 0502214517 / +39 0502 214 333
EMAIL maria.allegrini@df.unipi.it

Executive Committee Members

G. Delgado Barrio

Instituto de Matematica y Fisica Fundamental
Serrano 123 - CSIC

ES-28006 Madrid Spain

TEL/FAX +34 915 901 607 / +34 915 854 894
EMAIL gerardo@imaff.cfmac.csic.es

B. Feuerbacher

DLR - German Aerospace Center

Institute of Space Simulation

Postfach 90 60 58

DE-51170 Koeln, Germany

TEL/FAX +49 220 3601 2176 / +49 220 361 768
EMAIL berndt.feuerbacher@dir.de

P. Hoyer

University Of Helsinki

Department Of Physical Sciences

High Energy Physics Division « PO Box 64
FI-00014 Helsinki Finland

TEL/FAX +358 919 150 681/ +358 919 150 610
EMAIL paul.hoyer@helsinki.fi

H. Kelder

Royal Netherlands Meteorological Institute (KNMI)
Climate Research & Seismology

Atmospheric Composition Research Division
Wilhelminalaan 10 - PO Box 201

NL-3730 De Bilt Netherlands

TEL/FAX +31 302 206 472 / +31 302 210 407
EMAIL kelder@knmi.nl

M. Kolwas

Polish Academy of Sciences

Institute of Physics

International Postgraduate Studies

Al. Lotnikow 32/46

PL-02-668 Warsaw, Poland

TEL/FAX +48 228 470 917 / +48 228 430 926
EMAIL kolwas@ifpan.edu.pl

A.M. Levy

University of Copenhagen

“Det Naturvidenskabelige” Fakultet
Oster Voldgade 3

DK-1350 Copenhagen K., Denmark
TEL/FAX +45 35 324 280/ +45 33 773 820
EMAIL aml@adm.ku.dk

Z.R. Rudzikas

State Institute of Theoretical Physics and Astronomy
Academy Of Sciences Of Lithuania

A.Gostauto 12

LT-2600 Vilnius Lithuania

TEL/FAX +370 52 620 668 / +370 52 124 694

EMAIL rudzikas@itpa.lt

The Secretary General is a member of the Executive
Committee and most Committees ex officio (i.e. by
virtue of his office).

europhysics news NOVEMBER/DECEMBER 2005



EPS DIRECTORY 05/06

COMMITTEES

Conferences

Chair D.L.Nagy

KFKI Research Institute for Particle and Nuclear Physics
Department of Nuclear Physics + PO Box 49

HU-1525 Budapest, Hungary

TEL/FAX +36 13922517 /+36 13922518

EMAIL nagy@rmki.kfki.hu

Vice-Chair R. M. Pick

Professeur Emerite de Physique

Université Pierre et Marie Curie - UFR 925

4 Place Jussieu - BP 77

FR-75005 Paris, France

TEL/FAX +33 144 274 247 or 220 / +33 144 274 469
EMAIL cor@ccrjussieu.fr

Secretary P.Helfenstein

European Physical Society

6 rue des Freres Lumiére - BP 2136
FR-68060 Mulhouse Cedex, France

TEL/FAX +33 389 329 442 / +33 389 329 449
EMAIL patricia.helfenstein@uha.fr

Vice-Secretary O.Fornari

See address of the Secretary

TEL/FAX +33 389 329 448 / +33 389 329 449
EMAIL ophelia.fornari@uha.fr

Members

D. Batani, Istituto Nazionale di Fisica Nucleare, Milano,
Italy

J.P.Boon, Université Libre de Bruxelles, Belgium

A. Goede, Royal Netherlands Meteorological Institute
(KNMI), The Netherlands

J.M. Hutson, University of Durham, United Kingdom

R.J. Lambourne, The Open University, Milton Keynes,
United Kingdom

P. Lévai, KFKI, Budapest, Hungary

P.A. Lindgard, RISO National Laboratory, Roskilde,
Denmark

P. Nielaba, University of Konstanz, Germany

G. Poletto, Arcetri Astrophysical Observatory, Firenze,
Italy

0. Scholten, KVI Groningen, The Netherlands

A.Tiinnermann, Fraunhofer Institute, Jena, Germany

Observers

P.H. Borcherds, University of Birmingham, United
Kingdom

D. Bulfone, Sincrotrone Trieste, Italy

M. Chergui, EPFL-BSP Lausanne, Switzerland

G.A. Gehring, University of Sheffield, United Kingdom

C. Petit-Jean-Genaz, CERN Geneva, Switzerland

J. Vaagen, University of Bergen, Norway

D.L. Weaire, Trinity College Dublin, Ireland

Mobility Committee

Chair . Sosnowska

University of Warsaw * Wydzial Fizyki
Ul.hoza 69

PL-00681 Warsaw, Poland

TEL/FAX +48 226 287 262 / +48 226 287 252
EMAIL izabela@fuw.edu.pl

Vice-Chair S. Steenstrup

University of Copenhagen, Orsted Laboratory
Niels bohr institutt

Universitatsparken 5

DK-Copenhagen 0, Denmark

TEL/FAX +45 35 320 479 / +45 35 320 460
EMAIL stig@fys.ku.dk

Administrator M. Lazar

EMSPS Secretariat /o EPS Budapest Secretariat
Nador U.7

HU-1051 Budapest, Hungary

TEL/FAX +36 13173510/ 436 13176 817
EMAIL mlazar@office.mta.hu

Members

G. Chapuis, EPFL, Switzerland

E. Elbaz, University of Lyon 2, Villeurbanne, France
G. Erdelyi, University of Debrecen, Hungary

H. Ferdinande, Universiteit Gent, Belgium

J. Marro, Universidad de Granada, Spain

J. Niskanen, University of Helsinki, Finland

G. Sartori, Universita degli Studi di Padova, Italy
P.U. Sauer, Universitat Hannover, Germany

I. Sosnowska, Warsaw University, Poland

L. Tugulea, University of Bucharest, Romania

Publications & Scientific Communications

Chair C. Montonen

Department of Physics

P.O.Box 64

FI-00014 University of Helsinki, Finland
TEL/FAX +358 919 150 680/ +358 919 150 610
EMAIL claus.montonen@helsinki.fi

Members

L. Bonora, SISSA, Italy

R. Dekeyser, Katholieke Universiteit Leuven, Belgium
M. Draper, CERN, Switzerland

E.R. Hilf, Carl von Ossietzky University, Germany

K. llakovac, University of Zagreb, Croatia

F. Lalog, Ecole Normale Supérieure, France

E.W.A. Lingeman, NIKHEF, The Netherlands

J. Haynes, IOP Publishing, United Kingdom

J. Zinn Justin, CEA Orme des Merisiers, France

DIVISIONS & SECTIONS

East-West Task Force

Astrophysics

President J. Nadrchal

Academy of Sciences of the Czech Republic
Institute of Physics

Cukrovarnicka 10

CZ-162 53 Prague 6, Czech Republic

TEL/FAX +420 220 513 411/ +420 233 543 184
EMAIL nadrchal@fzu.cz

Secretary V. Urumov

Institute of Physics

Faculty of Natural Sciences and Mathematics
Arhimedova 5 < PO Box 162

MK- Skopje, Macedonia

TEL/FAX +389 23 117 055 ext.318 / +389 23 228 141
EMAIL urumov@iunona.pmf.ukim.edu.mk

Members
Z. Rajkovits, Eotvos Lorand University, Hungary
H. Szymczak, Polish Academy of Sciences, Poland

Gender Equality in Physics

Chair G.Gehring

University of Sheffield

Department of Physics & Astronomy

Hicks Building

UK-S3 7RH Sheffield, United Kingdom

TEL/FAX +44 1 142 224 299/ +44 1 142 223 555
EMAIL g.gehring@sheffield.ac.uk

europhysics news NOVEMBER/DECEMBER 2005

Chair AM.Cruise

The University of Birmingham

Edgbaston

UK-B15 2TT Birmingham, United Kingdom
TEL/FAX +44 1214 143 978/ +44 1 214 144 534
EMAIL a.m.cruise@bham.ac.uk

Secretary J.P.Swings

Université de Liege

Institut d’Astrophysique et de Géophysique * Bat.B5c
17, Allée du 6 Aot - Sart Tilman

BE-4000, Liege, Belgium

TEL/FAX +32 43 669 715 / +32 43 669 746

EMAIL jpswings@astro.ulg.ac.be

Board Members

H. Butcher, Netherlands Foundation Research in
Astronomy, Dwingelod, The Netherlands

C. Chiuderi, Universita Di Firenze, Italy

A.de Rujula, CERN-Theory Division, Geneva 23,
Switzerland

C. Enard, European Gravitational Observatory - Virgo,
Cascina (Pi) Italy

A. Fleck, ESA / NASA / GSF, Greenbelt, USA

A. Grillo, INFN - LNGS, Gran Sasso, Italy

E. Lorenz, Max-Planck-Institut Fuer Physik - WHI,
Munich, Germany

H. O. Meyer, DESY, Hamburg, Germany

J. Perez-Mercader, LAEFF, Madrid, Spain

C. Schaefer, Friedrich-Schiller-Universitaet Jena,
Germany

B. F. Schutz, Max Planck Institute For Gravitational
Physics, Golm Bei Potsdam, Germany

J. Silk, University of Oxford, United Kingdom

G.A. Tammann, Universitaet Basel, Binningen,
Switzerland

D. L. Wark, Rutherford Appleton Laboratory, Chilton
Didcot, United Kingdom

Ex-Officio Members

M.C.E. Huber, Paul Scherrer Institute,Villigen, Switzerland

P. L. Palle, Instituto Astrofisica de Canarias, La Laguna
Tenerife, Spain

Gravitational Physics Section

Chair G.Schaefer

Theoretisch-Physikalisches Institut
Friedrich-Schiller-Universitat

Max-Wein-Platz 1

DE-07734 Jena, Germany

TEL/FAX +49 3 641 947 114/ +49 3 641 947 102
EMAIL schaefer@tpi.uni-jena.de

Secretary K. Kokkotas

Department of Physics

Aristotle University of Thessaloniki
GR-54006 Thessaloniki, Greece

TEL/FAX +30 31998 185/ +30 31 995 384
EMAIL kokkotas@astro.auth.gr

Board Members

J. Bicak, Charles University, Czech Republic

C.J. Borde, Université Paris Nord, France

M. Cerdonio, University of Padova, Italy

K. Danzmann, Universitat Hannover, Germany

D. Enard, European Gravitational Observatory (Virgo),
Italy

V. Ferrari, University of Rome “La Sapienza’ Italy

A. Krasinski, Polish Academy of Sciences, Poland

1. Novikov, Observatory of the Copenhagen University,
Denmark

S. Reynaud, Université Pierre et Marie Curie, France

B. Schutz, University of Wales, College of Cardiff,
United Kingdom

T.J. Sumner, Imperial College,United Kingdom

G. Veneziano, CERN, Switzerland

Solar Physics Section

Chair P.Palle

Instituto Astrofisica de Canarias

Via Lactea

ES-38205, La Laguna - Tenerife, Spain
TEL/FAX +34 922 605 384 / +34 922 605 210
EMAIL plp@Il.iac.es

Secretary & Treasurer B.Fleck

ESA, Research & Scientific Support Department
NASA / GSFC - Mailcode 682.3

US-MD 20771, Greenbelt, USA

TEL/FAX +13 012864 098 /+1 3 012 860 264
EMAIL blfeck@esa.nascom.nasa.gov

Board Members

G. Aulanier, Observatoire de Paris, Meudon, France

M. Carlsson, University Of Oslo, Norway

L. Fletcher, University Of Glasgow, United Kingdom

A. Hansimeier, Universitaet Graz, Austria

A. Hofmann, Astrophysikalisches Institut Potsdam,
Germany

M. Karlicky, Academy of Sciences, Ondrejov, Czech
Republic

K.L. Klein, Observatoire de Paris, Lesia, France

V. Makarov, Pulkovo Astronomical Observatory,
St. Petersburg, Russia

S. Poedts, K.U.Leuven, Belgium

G. Poletto, Osservatorio Astrofisico di Arcetri, Firenze,
Italy

J. Sylwester, Polish Academy of Sciences, Wroclaw,
Poland

K. Tsinganos, University of Athens, Greece

Atomic & Molecular Physics

Chair L.H. Andersen

Department of Physics and Astronomy
University of Aarhus

DK-8000 Aarhus C, Denmark

TEL/FAX +45 89 423 605 / +45 86 120 740
EMAIL lha@phys.au.dk

235

e
~
S
-
&
)
~
‘™=
=




EPS DIRECTORY 05/06

Vice-Chair R.Grimm

Institute of Experimental Physics

University of Innsbruck

and IQUQI Austrian Academy of Sciences
AT-6020 Innsbruck, Austria

TEL/FAX +43 5125 076 300 / +43 5 125 072 921
EMAIL rudi@ultracold.at

Treasurer U. Becker

Fritz Haber Institute der Max-Planck-Gesellschaft
Faradayweg 4-6

DE-14195 Berlin, Germany

TEL/FAX +49 3 084 135 694 / +49 3 084 135 695
EMAIL becker_u@fhi-berlin.mpg.de

Board Members

J.M. Hutson, University of Durham, United Kingdom

J.M. Launay, University of Rennes, France

F. Martin, Universidad Autonoma de Madrid, Spain

G. Meijer, Fritz-Haber-Institut der Max-Planck-
Gesellschaft, Berlin, Germany

J. Vigué, IRSAMC, Université Paul Sabatier de
Toulouse, France

H. Schmidt-B6cking, Johann-Wolfgang Goethe
Universitaet, Frankfurt, Germany

A. V. Solov'yov, Loffe Physical Technical Institute,
St. Petersburg, Russia

Ex-Officio Members

D. Field, University of Aarhus, Denmark

H. Hotop, Technical University of Kaiserslautern,
Germany

J. Tennyson, University College London, United
Kingdom

Atomic Spectroscopy Section (EGAS)
Chair H. Hotop

Technische Universitaet Kaiserslautern

FB Physik - Postfach 3049

DE-67653 Kaiserslautern, Germany

TEL/FAX +49 6 312 052 328 / +49 6 312 053 906
EMAIL hotop@physik.uni-kl.de

Secretary C.Blondel

CNRS - Laboratoire Aimé Cotton

Campus d'Orsay - Bat. 505

FR-91405 Orsay Cedex

TEL/FAX +33 169 352 056 / +33 169 352 100
EMAIL christophe.blondel@lac.u-psud.fr

Board Members

C. Bordas, University of Lyon 1, Villeurbanne, France

M. Charlton, University of Wales, Swansea, United
Kingdom

W. Ernst, Graz University of Technology, Austria

J. Eschner, Universitat Autonoma de Barcelona, Spain

D. Hanstorp, Géteborg University, Sweden

E. Lindroth, University of Stockholm, Sweden

F. Merkt, Eth Honggerberg, Zurich, Switzerland

K. Pachucki, University of Warsaw, Poland

A. Sasso, Universita di Napoli Federico I, Italy

V. Shabaev, St-Petersburg State University, Russia

R. Shuker, Ben-Gurion University, Beer Sheva, Israel

K. Taylor, the Queen’s University Belfast, United
Kingdom

Webmaster H.P. Garnir

University of Lieége, Belgium

Place du 20 Aout

BE-4000 Liege

TEL/FAX +32 43 663 764 / +32 43 662 884
EMAIL hpgarnir@ulg.ac.be

Chemical & Molecular Physics Section
Chair J. Tennyson

Department of Physics and Astronomy
University College London Gower Street
UK-WC1E 6BT, London, United Kingdom
TEL/FAX +44 2 076 797 155/ +44 2 076 797 145
EMAIL j.tennyson@ucl.ac.uk

Secretary D. Gerlich

Institut fur Physic

TU Chemnitz

DE-09107 Chemnits, Germany

TEL/FAX +493 715313 135/+493 713513103
EMAIL gerlich@physik.tu-chemnitz.de

Board Members
P. Casavecchia, University of Perugia, Italy

236

O. Dulieu, University of Paris-sud, France

D. Gerlich, Technische Universitaet Chemnitz, Germany
K. Hansen, University of Chalmers, Sweden

T. Softley, University of Oxford, United Kingdom

E. Tiemann, University of Hannover, Germany

Electronic & Atomic Collisions Section
Chair T.D. Mark

Institut fur lonenphysik

Universitat Innsbruck

Technikerstr. 25

A-6020 Innsbruck, Austria

TEL/FAX +43 5125076 240 / +43 5 125 072 932
EMAIL tilmann.maerk@uibk.ac.at

Secretary & Co-opted Member C. Guet
Département de Physique Theorique et Appliquee
CEA lle de France - BP 12

FR-91680 Bruyeres le Chatel, France

TEL/FAX +33 169 264 711 / +33 169 267 026

EMAIL claude.guet@cea.fr

Board Members

D. Field, University of Aarhus, Denmark

F.A. Gianturco, Universita degli Studi di Roma, Italy

J. Grosser, Universitat Hannover, Germany

Dr. E. Lindroth, University of Stockholm, Sweden

R. McCullough, The Queen’s University of Belfast,
Ireland

C. Szmytkowski, Technical University of Gdansk, Poland

Vice Chair G.Pichler

Institute of Physics

Bijenicka cesta 46

HR-10000 Zagreb, Croatia

TEL/FAX +385 14 698 888 / +385 14 698 889
EMAIL pichler@ifs.hr

Condensed Matter Division

Chair E.P. O'Reilly

Tyndall National Institute (NMRC)

Lee maltings, Prospect Row

IE-Cork, Ireland

TEL/FAX +353 214 904 413 / +353 214 270 271
EMAIL eoin.oreilly@nmrc.ie

Board Members

M. Ausloos, Universite De Liege, Belgium

D. Bideau, Universite De Rennes |, France

0. Fischer, Université De Genéve, Switzerland

S. Hess, Technische Universitat Berlin, Germany

1. Ipatova, A F.loffe Physico-Technical Institute, St-
Petersburg, Russia

E.P. O'reilly, National Microelectronics Research
Centre Lee Maltings, Cork, Ireland

S. Wright, Imperial College, London, United Kingdom

Ex-Officio Members

H. Adrian, J. Gutenberg Universitat Mainz, Germany

J.L. Beeby, University Of Leicester, United Kingdom

A. Fasolino, University Of Nijmegen, The Netherlands

D. Frenkel, Fom, Amsterdam, The Netherlands

M.R. Ibarra, Universidad De Zaragoza, Spain

T. Janssen, University of Nijmegen, The Netherlands

G.R. Strobl, Albert-Ludwigs-Universitdt Freiburg,
Germany

K. Wandelt, Universitat Bonn, Germany

Co-Opted Members
A. Zawadowski, Technical University of Budapest,
Hungary

Invited
V.Sechovsky, Charles University, Prague, Czech Republic

Electronic & Optical Properties Of Solids

Chair J.L.Beeby

University of Leicester

University Road

UK-LE1 7RH, Leicester, United Kingdom

TEL/FAX +44 1462 522 323 / +44 1 462 558 291

EMAIL zjb@le.ac.uk

Board Members

A.J. Craven, University of Glasgow, United Kingdom

R. Del Sole, Universita degli Studi di Roma Tor
Vergata, Italy

A. Georges, Ecole Normale Supérieure, Paris, France

E.l. Lindau, Lund University, Sweden

A. Muramatsu, Universitaet Stuttgart, Germany

M. Scheffler, Max-Planck-Gesellschaft, Berlin-Dahlem,
Germany

W.M. Temmerman, Daresbury Laboratory, Warrington,
United Kingdom

Liquids Section

Chair D. Frenkel

FOM, Institute for Atomic and Molecular Physics
Kruislaan 407

NL-1098 SJ, Amsterdam, The Netherlands
TEL/FAX +31 206 081 234/ +31 206 684 106
EMAIL frenkel@amolf.nl

Secretary & Co-Opted Member G.J.Vroege
University of Utrecht

Faculteit Scheikunde

Padualaan 8

NL-3584 CH Utrecht, The Netherlands
TEL/FAX +31 302 533 406 / +31 302 533 870
EMAIL g.j.vroege@chem.uu.nl

Board Members

J. Finney, University College London,United Kingdom
D. Langevin, Universite de Paris 2 -LPS, Orsay, France
G. Maret, Universitaet Konstanz, Germany

R. Piazza, Politecnico di Milano, Italy

M. Telo Da Gama, Universidade de Lisboa, Portugal

Co-Opted Members

S. Dietrich, Max-Planck-Institut fir Metallforschung,
Stuttgart, Germany

H.N.W. Lekkerker, University of Utrecht, The
Netherlands

G.J. Vroege, University of Utrecht, The Netherlands

G. Wennerstrom, Lund University, Sweden

Low Temperature Section

Chair H. Adrian

Institut fur Physik

Johannes Gutenberg-Universitdt Mainz
Staudingerweg 7

DE-55099 Mainz, Germany

TEL/FAX +4961 313 923 637/ +49 61 313 924 076
EMAIL hermann.adrian@uni-mainz.de

Board Members

A. Barone, University of Naples “Federico Il Italy

T. Dietl, Polish Academy of Sciences, Poland

A. Gilabert, Université de Nice, France

M. Krusius, Helsinki University of Technology, Finland
C.J. Lambert, Lancester University, United Kingdom

Macromolecular Physics Section

Chair G. Strobl

Physikalisches Institut
Albert-Ludwig-Universitat
Hermann-Herder-Strasse 3

DE-79104 Freiburg, Germany

TEL/FAX +497 612 035 857 / +497 612 035 855
EMAIL strobl@physik.uni-freiburg.de

Board Members

A. Cunha, Universidade do Minho, Portugal

A.M. Donald, University of Cambridge, United Kingdom
J. A. Manson, EPFL, Switzerland

R. Schirrer, Institut Charles Sadron, Strasbourg, France
G. J. Vancso, University of Twente, The Netherlands

Co-opted Members

A.R. Khokhlov, Moscow State University, Russia
G.H. Michler, Martin-Luther-Universitat, Germany
A. Pavan, Politecnico di Milano, Italy

Magnetism Section

Chair M.R. Ibarra

Institut of Nanoscience of Aragon (INA)

Condensed Matter Physics department & Institute of
Material Science (ICMA)

Pedro Cerbuna 12

ES-50009 Zaragoza, Spain

TEL/FAX +34 976 762 777

EMAIL ibarra@unizar.es

Semiconductors & Insulators Section
Chair L. Sorba

Laboratorio TASC-INFM

S.S.14 km 163,5

1-34012 Basovizza (Trieste), ltaly

TEL/FAX +39 040 375 6439 / +39 040 226 767
EMAIL sorba@tasc.infm.it

europhysics news NOVEMBER/DECEMBER 2005



EPS DIRECTORY 05/06

Board Members

G. Bastard, Ecole Normale Supérieure, France

A. Fasolino, University of Nijmegen, the Netherlands
J. Kotthaus, Ludwig Maximilians Universitdt, Germany
F. Peeters, Universiteit Antwerpen, Belgium

M. Skolnick, University of Sheffield, UK

C.Tejedor, Universidad Autonoma de Madrid, Spain

Structural & Dynamical Properties of Solids
Chair T.Janssen

University of Nijmegen

Institute for Theoretical Physics

NL-6525 ED Nijmegen, The Netherlands

TEL/FAX +31 24 365 2854 / +31 24 365 2120
EMAIL t.janssen@science.ru.nl

Secretary A.Bussmann-Holder

Max-Planck Institut fir Festkorperforschung
Heisenbergstrasse 1

DE- 70569 Stuttgart, Germany

TEL/FAX +497 116 891 673/ +497 116 891 091
EMAIL annet@vaxff2.mpi-stuttgart.mpg.de

Board Members

H. Kuzmany, Universitaet Wien, Austria

S.W. Lovesey, Rutherford Appleton Laboratory, United
Kingdom

R. Pick, Université P.et M. Curie, France

Y.M. Vysochanskii, Uzhgorod University, Ukraine

Co-opted Members

A. Sternberg, University of Latvia, Latvia
R. Torre, Univ. Firenze, Italy

P. Wachter, ETH-Zurich, Switzerland

Surfaces & Interfaces Section

Chair K.Wandelt

Institut fur Physikalische Chemie
Universitat Bonn

Wegelerstrasse 12

DE-53115 Bonn, Germany

TEL/FAX +49 228 732 253 / +49 228 732 515
EMAIL k.wandelt@uni-bonn.de

Board Members

J. Jupille, Laboratoire CNRS, France

N.V. Richardson, University of St. Andrews, UK

U. Valbusa, Universita di Genova, Italy

P.Varga, Technische Universitat Wien, Austria

E. Vlieg, University of Nijmegen, The Netherlands

Co-opted Members

B. Gumbhalter, University of Zagreb, Croatia

J. Kirschner, Max-Planck-Institut, Halle, Germany

A.W. Kleyn, University of Leiden, the Netherlands

E. Michel, Universidad Autonoma de Madrid, Spain

J.J. Pireaux, Facultés Universitaires Notre-dame de la
Paix, Belgium

J.W. Niemantsverdriet, University of Eindhoven, the
Netherlands

M. Sancrotti, TASC-INFM, Trieste, Italy

M. Szymonski, University of Cracaw, Poland

Education

Chair E. Johansson

Stockholm University, Department of Physics
AlbaNova University Centre

SE-106 91 Stockholm, Sweden

TEL/FAX +46 855 378 670 / +46 855 378 601
EMAIL kej@physto.se

Board Members

H. Ferdinande, Universiteit Gent, Belgium

P. Hoyer, University of Helsinki, Finland

R.J. Lambourne, The Open University, Milton Keynes,
United Kingdom

G.Tibell (pre-university section), Upsala University,
Sweden

U. M. Titulaer (university section), Johannes Kepler
University, Linz, Austria

E. de Wolf, NIKHEF, Amsterdam, The Netherlands

Webmaster E.W.A.Lingeman

C/o NIKHEF

Europhysics Foundation

P.O.Box 41 882

NL-1009 DB, Amsterdam, The Netherlands
TEL/FAX +31 205922 117 / +31 205 925 155
EMAIL ed@nikhef.nl or bureau@nnv.nl

europhysics news NOVEMBER/DECEMBER 2005

University Section

Chair U.M.Titulaer

Institute for Theoretical Physics

Johannes Kepler University Linz
Altenbergerstrasse 69

AT-4040 Linz, Austria

TEL/FAX +43 73 224 688 551 / +43 73 224 688 585
EMAIL titulaer@tphys.uni-linz.ac.at

Board Members

H.J. Jodl, Universitat Kaiserslautern, Germany

R. Lambourne, The Open University, Milton Keynes,
United Kingdom

G. Planincic, University of Ljubljana, Slovenia

E. Sassi, University of Naples, Italy

1. Strzalkowski, Warsaw University of Technology,
Poland

M. Vollmer, University of Applied Sciences
Brandenburg, Germany

E. de Wolf, Nikhef, Amsterdam, the Netherlands

Webmaster R.Lambourne

The Open University

Department of Physics and Astronomy

Walton Hall

UK-Milton Keynes MK7 6AA, United Kingdom
TEL/FAX +44 1 908 653 229/ +44 1 908 654 192
EMAIL rjlambourne@open.ac.uk

Pre-University Section

Chair G.Tibell

Department of Radiation Sciences

Uppsala University + PO Box 535

SE-75121, Uppsala, Sweden

TEL/FAX +46 184713 849/ +46 184713 513
EMAIL gtibell@tsl.uu.se

Board Members

J. Dunin-Borkowski, Warsaw University, Poland
A. Oelme, Varberg, Sweden

G. Sauer, Universitat Giessen, Germany

Environmental Physics

Chair A.Goede

KNMI

Sciamachy Co-PI

Department KS/AS

Wilhelminalaan 10 < PO Box 201

NL-3730 AE De Bilt, The Netherlands
TEL/FAX +31 302 206 425/ +31 302 210 407
EMAIL albert.goede@knmi.nl

Board Members

D. Balis, AUTH - University Aristote of Thessaloniki,
Greece

G. Brasseur, MPI - Max Planck Institut, Hamburg,
Germany

J. Burrows, University of Bremen, Germany

T. Davies, University of East Anglia, United Kingdom

B. Diffey, Durham Hospitals, United Kingdom

M. Gil, INTA, Instituto Nacional Tecnica Aeroespacial,
Spain

1. Isaksen, University of Oslo, Norway

J.P. Pommereau, CNRS, France

P. Taalas, FMI - Finnish Meteorological Institute,
Finland

High Energy & Particle Physics

Chair J.Bernabeu

IFIC - Valencia

Departamento de Fisica teorica

Avenida Dr. Moliner 50

ES- 46100 Burjassot-Valencia, Spain
TEL/FAX +34 963 544 553 / +34 963 543 381
EMAIL jose.bernabeu@uv.es

Secretary D.Wark

Imperial College

South Kensington campus
UK-London SW7 2AZ, United Kingdom
EMAIL d.l.wark@rl.ac.uk

Board Members

G. Barreira, LIP, Lisbon, Portugal

R. Barlow, University of Manchester, United Kingdom
H. Burkhardt, CERN, Geneva, Switzerland

R. Leitner, IPNP, Prague, Czech Republic

P. Levai, RMKI, Budapest, Hungary

F. Linde, NIKHEF, Amsterdam, the Netherlands
P. Osland, University of Bergen, Norway

F. Pauss, ETH, Zurich, Switzerland

S. Pokorski, University of Warsaw, Poland

E. Rabinovici, Hebrew University, Jerusalem, Israel
P. Sphicas, University of Athens, Greece

J. Tuominiemi, University of Helsinki, Finland
P.Vilain, IIHE, Bruxelles, Belgium

N. Wermes, University of Bonn, Germany

J. Wess, University of Munich, Germany

I. Wormser, LAL Orsay, France

F. Zwirner, University of Rome, INFN, Italy

Nuclear Physics

Chair R.C.Johnson

University of Surrey

School of Electronics and Physical Sciences
Department of Physics

UK-Guildford, Surrey, GU2 7XH, United Kingdom
TEL/FAX +44 1 483 689 375 / +44 1 483 686 781
EMAIL rjohnson@surrey.ac.uk

Secretary O.Scholten

Kernfysisch Versneller Instituut - KVI
Zernikelaan 25

NL-9747 AA Groningen, The Netherlands
TEL/FAX +31 503 633 552/ +31 503 634 003
EMAIL scholten@kvi.nl

Treasurer M. Lewitowicz

GANIL

Boulevard Henri Becquerel - BP 5027
FR-14076 Caen Cedex, France

TEL/FAX +33 231 454 598 / +33 231 454 665
EMAIL lewitowicz@ganil.fr

Chairman-elect H. Freiesleben

Institut fur Kern- und Teilchenphysik
Technische Universitdt Dresden
DE-01062 Dresden, Germany

EMAIL freiesleben@physik.tu-dresden.de

directory

Board Members

C. Leclercq-Willain, Université Libre de Bruxelles,
Belgium

J. Stamenov, BAS, Sofia, Bulgaria

Z. Sujkowski, The Andrzej Soltan Institute for Nuclear
Studies, Poland

A.Tirler, Technical University of Munich, Germany

N. Van Giai, Université de Paris-Sud, Orsay, France

R. Wyss, KTH - Royal Institute of Technology,
Stockholm, Sweden

Co-opted Members

A. Gridney, Saint-Petersburg University, Russia

M. Hass, Weizmann Institute of Science, Rehovot,
Israel

A. Kugler, Nuclear Physics Institute ASCR, Rez, Czech
Republic

M. Leino, University of Jyvéskyld, Finland

R. G. Lovas, Hungarian Academy of Sciences,
Debrecen, Hungary

Y. N. Novikov, St. Petersburg Nuclear Physics Institute,
Russia

B. Rubio, University of Valencia, Spain

G. Viesti, University of Padova, Italy

Observer (NuPECC)
G. Rosner, University of Glasgow, United Kingdom

Physics in Life Sciences

Chair PA.Lindgard

the Danish Technical University

Institute of Physics, B.309

DK-2800 Lyngby, Denmark

TEL/FAX +45 45 253 285 / +45 45 931 669
EMAIL p.a.lindgard@fysik.dtu.dk

Secretary H. Flyvbjerg

RISOE National Laboratory

Biosystems Department

DK-4000 Roskilde, Denmark

TEL/FAX +45 46 774 104 / +45 46 774 109
EMAIL henrik flyvbjerg@risoe.dk

Board Members

M. Cieplak, Polish Academy of Sciences, Warsaw,
Poland

237



EPS DIRECTORY 05/06

V. Croquette, Laboratoire de Physique Statistique,
Paris, France

T. Duke, Cavendish Laboratory, Cambridge, United
Kingdom

H. Flyvbjerg, RISOE National Laboratory, Roskilde,
Denmark

H. Gaub, University of Munich, Germany

A. Maritan, SISSA, Trieste, Italy

P. Ormos, Institute of Biophysics, Szeged, Hungary

F. Parak, Technische Universitat Miinchen, Germany

J. Zaccai, CEA-CNRS, Institut de Biologie Structurale,
Grenoble, France

Plasma Physics

Chair J.B Lister

CRPP / EPFL

CH-1015 Lausanne, Switzerland

TEL/FAX +41 216 933 405/ +41 216 935 176
EMAIL jo.lister@epfl.ch

Vice-Chair R.Bingham

Rutherford Appleton Laboratory

Chitton Didcot

UK- OX11 0QX, United Kingdom

TEL/FAX +44 1 235 445 800 / +44 1 235 445 848
EMAIL rbingham@rl.ac.uk

Board Members

C. Hidalgo, EURATOM-CIEMAT, Madrid, Spain

S. Jacquemot, CEA/DAM - lle de France, Bruyéres-le-
Chatel, France

J. Ongena, EURATOM - Belgium State, NFSR, Belgium

J. Stockel, Academy of Sciences of the Czech
Republic, Prague

M. Tendler, Royal Institute of Technology, Stockholm,
Sweden

Co-Opted Members
T. Mérk, Science Faculty Innsbruck, Austria
M.E. Mauel, Columbia University, New York, USA

Ex-Officio Members

G.M.W. Kroesen, Eindhoven University of Technology,
The Netherlands

J. Meyer-Ter-Vehn, MPI - Max-Planck-Institute for
Quantum Optics, Garching, Germany

Beam Plasma and Inertial Fusion Section
Chair J. Meyer-ter-Vehn

Max-Planck-Institut fur Quantenoptik
Hans-Kopfermann-Str. 1

DE-85748 Garching, Germany

TEL/FAX +49 8 932 905 137 / +49 8 932 905 200
EMAIL meyer-ter-vehn@mpqg.mpg.de

Board Members

S. Atzeni, Universita "La Sapienza" di Roma, Italy

J. Honrubia, Polytechnic University of Madrid, Spain

P. Mora, Centre de Physique Théorique (UPR 14 du
CNRS), France

P. Norreys, Central Laser Facility, Rutherford Appleton
Laboratory, United Kingdom

J. Wolowski, Institute of Plasma Physics and Laser
Microfusion, Poland

Co-Opted Members

J.B.Lister, CRPP / EPLFL, Lausanne, Switzerland
B. Rus, Institute of Physics, Czech Republic

B. Sharkov, ITEP, Russia

Dusty & Colloidal Plasmas Section

Chair G.M.W.Kroesen

Eindhoven University of Technology
Department of Physics + PO Box 513

NL-5600 MB, Eindhoven, the Netherlands

TEL +31 402 474 357 / +31 402 472 550 (Secret.)
FAX +31 402 456 050

EMAIL g.m.w.kroesen@tue.nl

Board Members

J. Allen, Oxford University, United Kingdom
L. Boufendi, Orléans University, France

0. Petrov, Moscow University, Russia

0. Havnes, Troms® University, Norway

Co-Opted Members
F. Wagner, MPI Greifswald, Germany

238

Quantum Electronics & Optics

Chair P. French

Imperial College

Physics Department

Femtosecond Optics Group

Prince Consort Road

UK-SW7 2BW London, United Kingdom
TEL/FAX +44 2 075 947 706 / +44 2 075 947 714
EMAIL paul.french@ic.ac.uk

Secretary G.Bjork

QEO IMIMT

School of Communication and Information
Technology

Royal Institute of Technology

KTH Electrum 229

SE-164 40 Kista, Sweden

TEL/FAX +46 87 904 060 / +46 87 904 090
EMAIL gunnarb@imit.kth.s

Board Members

C. Bjork, Royal Institute of Technology, KTH, Sweden

R. Blatt, Universitat Innsbruck, Austria

A.D. Boardman, University of Salford, United Kingdom

A. Brignon, Thales Research and Technologies, Orsay,
France

V. Buzek, Slovak Academy of Sciences, Bratislava,
Slovakia

P. French, Imperial College London, United Kingdom

D. Lenstra, Vrije Universiteit, Amsterdam, the
Netherlands

P. Mataloni, Universita di Roma la Sapienza, Italy

R. Menzel, Universitat Potsdam, Germany

G. Roosen, Université Paris Sud, IOTA, Orsay, France

L. Torner, Universitat Politecnica de Catalunya,
Terrassa, Spain

A. Tuennermann, Friedrich-schiller Universitét, Jena,
Germany

1. Veretenicoff, Vrije Universiteit Brussels, Belgium

Co-opted Members

A. Arimondo, Universita degli Studi di Pisa, Italy

J. Dalibard, ENS — UPMC, Paris, France

M. Dawson, Institute of Photonics, University of
Strathclyde, Glasgow, United Kingdom

S. de Silvestri, Politecnico di Milano, Italy

M. Ducloy, Institute Galilee, Université Paris nord,
Villetaneuse, France

C. Fabre, Université Pierre et MarieCurie, Paris, France

J. Faist, Université de Neuchatel, Switzerland

D.R. Hall, Heriot-Watt University, Edinburgh, United
Kingdom

G. Huber, Universitat Hamburg, Germany

U. Keller, Swiss Federal Institute of Technology - ETH
Zurich, Switzerland

P. Laporta, Politecnico di Milano, Italy

G. Leuchs, Universitdt Erlangen-Nurnberg, Germany

P. Loosen, Fraunhofer Institut fiir Lasertechnik,
Aachen, Germany

P. Mandel, Université Libre de Bruxelles, Belgium

E. Riedle, Ludwig-Maximilians-Universitat Miinchen,
Germany

P. Torma, Helsinki University of Technology, Finland

V.N. Zadkov, M.V.Lomonosov Moscow State
University, Russia

N. Zhedulev, united kingdom

Statistical & Nonlinear Physics

Chair J.-P.Boon

Local 2.N5.215,CP 231

ULB Campus Plaine

BE-1050 Bruxelles, Belgium

TEL/FAX +32 26 505 527 / +32 26 505 767
EMAIL jpboon@ulb.ac.be

Board Members

P. Alstrom, Niels Bohr Institute — CATS, Copenhagen,
Denmark

F.T. Arecchi, University of Firenze, Italy

M. Ausloos, University of Liege, Belgium

S. Fauve, ENS-LPS, Paris, France

P. Hanggi, University of Augsburg, Germany

J. Kertesz, Technical University of Budapest, Hungary

M. San Miguel, CSIC - UIB, llles Balears, Spain

D. Sherrington, University of Oxford, United Kingdom

T. Tel, E6tvos University, Budapest, Hungary

A. Vulpiani, Universita degli Studi La Sapienza, Rome,
Italy

D.L. Weaire, Trinity College, Dublin, Ireland
H.S. Wio, Centro Atomico Bariloche, Argentina

Co-opted Members
G. Ahlers,University of California, Santa Barbara, USA

P. A. Lindgard, RISOE National Laboratory, Denmark
T. Viczek, ELTE, Budapest, Hungary

Accelerators Group

Chair C.R. Prior

ASTeC Intense Beams Group

Rutherford Appleton laboratory

UK-Oxon OX11 0QX, Chilton, Didcot, United Kingdom
TEL/FAX +44 1 235 445 262 / +44 1 235 445 607
EMAIL c.r.prior@rl.ac.uk

Chairman-elect C. Biscari
INFN-LNF

Via E. Fermi, 40

IT-00044 Frascati (Roma), Italy

Executive Secretary & Treasurer C. Petit-Jean-Genaz
CERN - AC Division

CH-1211 Geneva 23, Switzerland

TEL/FAX +41 227 673 275 / +41 227 679 460

EMAIL christine.petit-jean-Genaz@cern.ch

Board Members

C. J. Bocchetta, Sincrotrone Trieste, Italy

R. Brinkmann, DESY, Germany

H. Danared, Stockholm University - MSI, Sweden

J.P. Delahaye, CERN - AB Division, Switzerland

D.J.S. Findlay, Rutherford Appleton Laboratory,UK

J.M. Lagniel, CEA Saclay, France

M. Minty, DESY, Hamburg, Germany

S.P. Moller, Arhus Universitet — ISA, Denmark

A. Mosnier, CEN Saclay, France

C. Pagani, INFN - [ASA, Italy

F. Perez, CELLS, Spanish Synchrotron Light Source, Spain

U. Ratzinger, Johann Wolfgang Goethe Universitat,
Germany

L. Rivkin, Paul Scherrer Institut, Switzerland

F. Ruggiero, CERN- AB Division, Switzerland

Y. Shatunov, Budker Institute of Nuclear Physics, Russia

S.L. Smith, ASTEC, Daresbury Laboratory, United
Kingdom

U. van Rienen, Universitat Rostock, Germany

A.Wrulich, Paul Scherrer Institute, Switzerland

Computational Physics Group

Chair PH.Borcherds

The University of Birmingham - Physics Department
Edgbaston

UK-Birmingham B15 2TT, United Kingdom

TEL/FAX +44 1 214 753 029

EMAIL p.h.borcherds@bham.ac.uk

Secretary A.Hansen

Instituut for Fysikk

Norges Teknisk-naturvitenskapelige Universitet
NO-7491 Trondheim, Norway

TEL/FAX +47 73 593 649 / +47 73 593 372
EMAIL alex.hansen@phys.ntnu.no

Board Members

K. Binder, Gutenberg Universitaet Mainz, Germany

Z.D. Genchev, Bulgarian Academy of Sciences,
Bulgaria

J. Kertesz, Technical University of Budapest, Hungary

J. Marro, Universidad de Granada, Spain

Co-opted Member

N. Attig, Forschungszentrum Juelich GMbH, Germany

M. Bubak, Institute of Computer Science, Krakow,
Poland

G. Ciccotti,Universita "La Sapienza" di Roma, Italy

J.Nadrchal, Academy of Sciences of the Czech Republic

Experimental Physics Control Systems Group

Chair A.Daneels

CERN European Organization for Nuclear Research
CH-1211 Geneva 23, Switzerland

TEL/FAX +41 227 672 581 / +41 227 674 400
EMAIL axel.daneels@cern.ch

europhysics news NOVEMBER/DECEMBER 2005



EPS DIRECTORY 05/06

Secretary D.Bulfone

Sincrotrone Trieste, Elettra

S.5.14 - Km. 163.5, Basovizza

IT-34012 Trieste, Italy

TEL/FAX +39 0403 758 579/ +39 0 403 758 565
EMAIL daniele.bulfone@elettra.trieste.it

Treasurer J.-F. Gournay

CEA-Saclay

DAPNIA/SIS

FR-91191 Gif-sur-Yvette Cedex, France
TEL/FAX +33 169 087 032 / +33 169 088 138
EMAIL jgournay@cea.fr

Board Members

L. Hoff, Brookhaven National Laboratory, USA

1. S. Ko, Pohang University of Science & Technology,
Korea

S. Lackey, Fermi National Accelerator Laboratory, USA

R. Miiller, BESSY, Berlin, Germany

G. Raffi, European Southern Observatory (ESO),
Germany

R.Tanaka, JASRI, Japan

Co-opted Member

D. Bulfone, Sincrotrone Trieste, Elettra, Italy

R. Pose, JINR, Joint Institute for Nuclear Research, Russia

N. Yamamoto, High Energy Accelerator Research
Organization, Japan

Contacts

G. Baribaud, CERN, Switzerland

A. Blecha, Observatoire de Genéve, Switzerland

R. Buenger, Profibus, Switzerland

W. Busse, Hahn-Meitner Institut, Germany

N. Charrue, CERN, Switzerland

R. Chevalley, Acqiris, Switzerland

M. Clausen, DESY, Germany

P.N. Clout, Vista Control System Inc., USA

S. Dasgupta, Bhabha, Variable Energy Cyclotron
Centre, India

J. Farthing, Culham Science Centre, Jet Facilities,
United Kingdom

B.Frammery, CERN-Ps Division, Switzerland

J.P. Froideveaux, Worldfip HQ, France

D.P. Gurd, Spallation Neutron Source, USA

W.P.J. Heubers, NIKHEF, the Netherlands

K.T. Hsu, SRCC, Taiwan

J.W. Humphrey, SLAC, USA

N. Kanaya, University of Ibaraki, Japan

T. Katoh, KEK - Accelerator Laboratory, Japan

S. Kim, SAMSUNG, South Korea

T. Kimura, Japan Atomic Energy Research Institute,
Japan

W.D. Klotz, ESRF, France

H. Kohler, National Accelerator Centre, South Africa

E.A. Kuper, Russian Academy of Sciences, Russia

R. Lackey, Fermi National Laboratory, USA

D. Lecorche, GANIL, France

S. Lewis, Lawrence Berkeley Laboratory, USA

A. Luchetta, Consorzio RFX, Italy

J.R. Lutz, CNRS - IN2P3, France

R.P. Mannix, Rutherford Appleton Laboratory, United
Kingdom

B.M. Marechal, Instituto de Fisica, Brazil

R. Mc Clatchey, University of West England, UK

W.P. Mcdowell, Argonne National Laboratory, USA

A. Mezger, Paul-Scherrer-Institut, Switzerland

M. Mouat, TRIUMPF, Canada

R. Mueller, BESSY, Berlin, Germany

Y. Navratil, Czech Technical University, Czech Republic

O. Ninin, CERN, ST Division, Switzerland

M. Panighini, Societa Italiana Avionica, Italy

R. Pose, Joint Institute for Nuclear Research, Russia

M. Pucillo, Astronomical Observatory of Trieste, Italy

M. Rabany, CERN, Switzerland

E. Raffi, European Southern Observatory, Germany

G. Raupp, Max-Plack-Institut Fu Plasmaphysik,
Germany

I. Riquez, The Oracle Center, United Kingdom

B. Schirmer, University of Dortmund, Germany

T. Schmidt, Consorzio RFX, Italy

M. Serio, INFN, Italy

J. Skelly, Brookhaven National Laboratory, USA

R. Steiner, GSI, Germany

A. Sytin, Institute for High Energy Physics, Russia

C.Takada, NIRS, Japan

R.Tanaka, JASRI, Japan

M. Thuot, Los Alamos National Laboratory, USA

J.0. Uhomoibhi, The Queens University of Belfast,

europhysics news NOVEMBER/DECEMBER 2005

United Kingdom

D.Van Houtte, CEA Cadarache, France

E. Vesztergombi, CERN, Switzerland

K. White, Thomas Jefferson National Accelerator
Facility, USA

F.H. Worm, Creative Electronic Systems SA, Switzerland

N. Yamamoto, KEK - Accelerator Laboratory, Japan

L. Yamazaki, National Institute for Fusion Science, Japan

C.Y. Yao, Hefei National Synchrotron Radiation
Laboratory, China

J. Zhao, Institute of High Energy Physics, China

Z. Zhiyuan, INR, China

History of Physics Group

Chair D.L.Weaire

Trinity College - Department of Pure and Applied
Physics - College Green

|E-2 Dublin, Ireland

TEL/FAX +353 16 081 055/ +353 16 711 759

EMAIL denis.weaire@tcd.ie

Secretay G.Vlahakis
National Hellenic Research Foundation, Greece
EMAIL gvlahakis@yahoo.com

Board Members

A.Angelopoulos, University of Athens, Greece

L. J. Boya, University of Zaragoza, Spain

N. Efthymios, National Hellenic Research Foundation,
Greece

K. Grandin, The Royal Swedish Academy of Sciences,
Sweden

D. Hoffmann, Max-Planck-Institut Berlin, Germany

E. Holmberg, University of Helsinki, Finland

R. Karazija, Vilnius University, Lithuania

L. Kovacs, Berzsenyi College, Szombathely, Hungary

J. Lajzerowicz, Université Joseph Fourier, France

P. Lazarova, Bulgaria

A.Moreno Gonzalez, Universidad Complutense de
Madrid, Spain

J. Sebesta, Comenius University, Bratislava, Slovakia

C.Symeonidis, University of Athens, Greece

A.K. Wroblewski, Warsaw University, Poland

Physics for Development Group

Chair M. Chergui

Institut de Physique de la Matiére Condensée
Faculté des Sciences, BSP

Université de Lausanne

CH-1015 Lausanne, Switzerland

TEL/FAX +41 216 923 664 or 678 / +41 216 923 635
EMAIL majed.chergui@epfl.ch

Board Members

M.C. Abreu E Silva, Universidade do Algarve, Portugal

F. Brouillard, Université Catholique de Louvain,
Belgium

1. Nadrchal, Academy of Sciences of the Czech
Republic, Czech Republic

F. Piuzzi, CEA-Saclay, France

A. Suzor-Weiner, Université de Paris-Sud - LPP, France

L. Woeste, Freie Universitét Berlin, Germany

Co-opted Members

G. Delgado Barrio, Instituto de Matematica y Fisica
Fundamental, CSIC, Spain

V.L. Fara, Polytechnical Institute of Physics, Romania

G. Furlan, Universita Trieste, Italy

L. Hasselgren, LPPS, Upsala University, Sweden

E. Lillethun, University of Bergen, Norway

Technology Group

Chair J. Vaagen

University of Bergen, Department of Physics
Allegaten 55

NO-5007 Bergen, Norway

TEL/FAX +47 55 582 724 / +47 55 589 440
EMAIL jans.vaagen@fi.uib.no

Board Members

G. Demortier, University of Namur, Belgium

J.P. Huignard, THALES-Thomson CSF, France

C. Rossel, IBM Zurich Research, Switzerland

G. Orlandi, Torino Internazionale, Istituto Superiore
Mario Boella, Italy

H. Wenninger, CERN, Switzerland

K.J. Wittamore, Triskel, United Kingdom

NATIONAL SOCIETIES

Albanian Physical Society

Secretary A.Deda

Universiteti | Tiranes

Fakulteti | Shkencave Natyrore

Bulevardi Zogu 1

AL -Tirana, Albania

TEL/FAX +355 427 669

EMAIL antonetad@yahoo.com or adeda@fshn.edu.al

President P.Berberi
Polytechnic University of Tirana
Department of Physics

AL -Tirana, Albania

TEL/FAX +355 4 227 914

EMAIL pberberi@yahoo.com

Vice-President D. Spahiu
Tirana University

Faculty of Natural Sciences
Department of Physics
Rr.D.Hima 15

AL-Tirana, Albania

EMAIL dspahiu@yahoo.com

directory

Armenian Physical Society

Secretary General E.Babakhanyan
Armenian Physical Society

Alikhanian Brothers St.2

AM-375 036 Yerevan, Armenia

TEL/FAX +374 2 341 347 / +374 2 350 030
EMAIL eri@Ix2.yerphi.am

President R. Avakian
See address of the Secretary General
EMAIL ravakian@hermes.desy.de

Austrian Physical Society

Secretariat E. C.Tscheliessnigg
Universitatsplatz 5

AT-8010 Graz, Austria

TEL/FAX +43 6 764 849 053 / +43 3 163 809 816
EMAIL office@oepg.at

President H.Rauch

Atominstitut der Osterreichischen Universitdten
Praterallee 2

AT-1020 wien, Austria

TEL/FAX +43 15880 114 100/ +43 15880 114 199
EMAIL rauch@ati.ac.at

Vice-President G.Vog|

Institut fur Materialphysik

AT-1090 Wien, Austria

TEL/FAX +43 142775 1700/ +43 142779 517
EMAIL vogl@ap.univie.ac.at

Treasurer M.E. Lippitsch

Karl-Franzens Universitat Graz

Institute fur Physik

Universitatsplatz 5

AT-8010 Graz, Austria

TEL/FAX +43 3 163 805 192/ +43 3 163 809 816
EMAIL max.lippitsch@uni-graz.at

Belarus

Belarusian Physical Society

Secretary E.A. Ershov-Pavlov

Institute of Molecular and Atomic Physics
National Academy of Sciences of Belarus

70, F.Skaryna Ave.

BY-220072 Minsk, Belarus

TEL/FAX +375 172 840 954 / +375 172 840 030
EMAIL ershov@imaph.bas-net.by

President PA. Apanasevich

B.l. Stepanov Institute Of Physics
National Academy Of Sciences Of Belarus
70, F.Skaryna Ave

239



EPS DIRECTORY 05/06

BY-220072 Minsk, Belarus
TEL/FAX +375 172 840 654 / +375 172393 131
EMAIL ifanbel@ifanbel.bas-net.by

Vice-Presidents

V. M. Anischik, Belarussian State University, Belarus
TEL +375 172 066 001 or 206 690

N. M. Olehnovich, National Academy of Sciences,
Belarus
TEL +375 172 841 203

Belgium

Belgian Physical Society

General Secretary J.Ingels

Belgisch Intituut voor Ruimte-Aéronomie
Institut d'Aéronomie Spatiale de Belgique
Editor Physicalia Info

Ringlaan 3

BE-1180 Ukkel, Belgium

TEL/FAX +32 23 730 378 / +32 23 748 423
EMAIL johan.ingels@bira-iasb.oma.be

PresidentV .Pierrard

Institut d'Aéronomie Spatiale de Belgique
3, Avenue Circulaire

BE-1180, Uccle, Belgium

TEL/FAX +32 23730418/ +32 23 748 423

EMAIL viviane.pierrard@bira-iasb.oma.be

Vice-President P.Wagner

Limburg Universitair Centrum

Instituut voor Materiaallonderzoek
Wetenschapspark 1

BE-3590 Diepenbeek, Belgium

TEL/FAX +32 11 268 895/ +32 11 268 899
EMAIL patrick.wagner@luc.ac.be

Treasurer J. Hellemans

Katholieke Universiteit Leuven

Academische Lelarenopleiding Natuurkunde
Naamsestraat 61

BE-3000, Leuven, Belgium

TEL/FAX +32 16 324 250 / +32 16 324 254

EMAIL jacqueline.hellemans@fys.kuleuven.ac.be

Bulgaria

Union of Physicists in Bulgaria

Secretary S.Jordanova

Union of Physicists In Bulgaria + Administrative Council
5,James Bourchier Blvd

BG-1164 Sofia, Bulgaria

TEL/FAX +359 2 627 660 / +359 29 625 276

EMAIL upb@phys.uni-sofia.bg

Executive Secretary T.Popov
Sofia University

5 James Bourchier Blvd

BG-1164, Sofia, Bulgaria

TEL/FAX +359 28 161 880

EMAIL t.popov@phys.uni-sofia.bg

President M. Mateev

See address of the Secretary

TEL/FAX +359 2 622 938 / +359 29 625 276
EMAIL mateev@phys.uni-sofia.bg

Vice-Presidents
Llliev, Shoumen University, Bulgaria
EMAIL iliev@shu-bg.net
S. Saltiel, Sofia University, Bulgaria
EMAIL saltiel@phys.uni-sofia.bg
N. Toncheyv, Bulgarian Academy of Science, Institute of
Solid State Physics, Bulgaria
EMAIL tonchev@issp.bas.bg

Treasurer
S.Saltiel, Sofia University, Bulgaria
EMAIL saltiel@phys.uni-sofia.bg

Croatian Physical Society
Secretary V.Horvatic
Institute of Physics

Bijenicka 46

240

HR-10000 Zagreb, Croatia
TEL/FAX +385 14 698 861 / +385 14 698 889
EMAIL blecic@ifs.hr

President A. Hamzic

University of Zagreb

Faculty of Science, Department of Physics
Bijenicka 32

HR-10000 Zagreb, Croatia

TEL/FAX +385 14 605 544 / +385 14 680 336
EMAIL hamzic@sirius.phy.hr

Vice-President Z. Roller-Lutz

University of Rijeka

Medical School

Brace Branchetta

HR-51000 Rijeka, Croatia

TEL/FAX +385 51 651 210/ +385 51 675 806
EMAIL roller@medri.hr

Treasurer D.Veza

University of Zagreb

Faculty of Science, Department of Physics
Bijenicka 32

HR-10000 Zagreb, Croatia

TEL/FAX +385 14 605 535 / +385 14 680 336
EMAIL veza@phy.hr

Czech Republic

Czech Physical Society
Administrative Secretary A.Bernathova
Czech Physical Society

Na Slovance 2

CZ-182 21, Prague 8, Czech Republic
EMAIL cieply@uijf.cas.cz

General Secretary A.Cieply

Nuclear Physics Institute ASCR

CZ-250 68, Rez near Prague, Czech Republic
TEL/FAX +420 266 173 284 / +420 220 940 165
EMAIL cieply@uijf.cas.cz

President J. Dittrich

Institute of Physics

Academy of Sciences of the Czech Republic
Narodni 3

CZ-117 20 Prague 1

TEL/FAX +420 220 941 147 / +420 220 941 130
EMAIL dittrich@uijf.cas.cz

Vice-Presidents

D. Slavinska, Charles University, Prague, Czech Republic
EMAIL slavinsk@mbox.troja.mff.cuni.cz

D. Novotny, University of J.E. Purkyne, Usti nad Labem,
Czech Republic
EMAIL slavinsk@kmf.troja.mff.cuni.cz

Treasurer P.Bydzovsky

Nuclear Physics Institute ASCR

CZ-250 68, Rez near Prague, Czech Republic
TEL/FAX +420 266 173 283 / +420 220 940 165
EMAIL bydzovsky@uijf.cas.cz

Accountant L. Zizkovska

Institute of Physics ASCR
Cukrovarnicka 10

CZ-162 53, Prague 6, Czech Republic
EMAIL ziz@fzu.cz

Danish Physical Society

Secretary B.Andresen

University of Copenhagen

Physics Laboratory

Universitetsparken 5

DK-2100 Copenhagen, Denmark

TEL/FAX +45 35 320 470 / +45 35 320 460
EMAIL andresen@fys.ku.dk

President J.W.Thomsen

Orsted Laboratory

University of Copenhagen
Universitetsparken 5

DK-2100 Copenhagen, Denmark

TEL/FAX +45 35 320 463 / +45 35 320 460
EMAIL jwt@fys.ku.dk

Treasurer E.H. Pedersen
University of Aarhus

Institute of Physics and Astronomy
Nordre Ringgade 1

DK-8000 Aarhus C, Denmark
EMAIL horsdal@ifa.au.dk

Estonian Physical Society
Secretariat

Estonian Physical Society

Téhe 4

EE-51010 Tartu, Estonia

TEL/FAX +3727 428 182/ +372 7 383 033
EMAIL efs@fi.tartu.ee

President A.Kikas

University of Tartu

Institute of Physics

Riia 142

EE-51014 Tartu, Estonia

TEL/FAX +3727 428 182/ +372 7 383 033
EMAIL arvo.kikas@ut.ee

Vice-Presidents
1.Kink, University of Tartu, Estonia
TEL/FAX +372 7 428 886 / +372 7 383 033
EMAIL ilmarkink@fi.tartu.ee
P. Suurvarik, Tallinn Universityof Technology, Estonia
TEL/FAX +372 6 203 000 / +372 6 202 020
EMAIL spaul@edu.ttu.ee

Treasurer P.Tenjes

University of Tartu

Tahe 4

EE-51010 Tartu, Estonia

TEL/FAX +3727 375576 / +3727 375 570

Finnish Physical Society

General Secretary E.Hanninen

University of Helsinki

Finnish Physical Society

FI-00014 University of Helsinki , Finland
TEL/FAX +358 919 150 523 / +358 919 150 553
EMAIL finphys@helsinki.fi

President K.Haméldinen

University of Helsinki, Department of Physical Sciences
Division of X-ray Physics « PO Box 64

FI-00014 University of Helsinki, Finland

TEL/FAX +358 919 150 640 / +358 919 150 610

EMAIL keijo.hamalainen@helsinki.fi

Vice-President K.A. Suominen

University of Turku, Department of Physics
FI-20014 University of Turku, Finland
TEL/FAX +358 23 335 782 / +358 23 335 070
EMAIL kale-antti.suominen@utu.fi

French Physical Society

Secretary V.Lemaitre

Société Francaise De Physique

33 rue Croulebarbe

FR-75013, Paris, France

TEL/FAX +33 144 086 713 / +33 144 086 719
EMAIL sfp@sfpnet.org

General Secretary J.Vannimenus
Ecole Normale Superieure
Laboratoire de Physique Statistique
24 rue Lhomond

FR-75231, Paris Cedex 05, France
TEL/FAX +33 144 323 762

EMAIL jean.vannimenus@ens.fr

President R. Maynard

CNRS - UJF

Physique Numérique

25,avenue des Martyrs - BP 166

FR-38042 Grenoble Cedex

TEL/FAX +33 476 881 019/ +33 476 887 981
EMAIL roger.maynard@grenoble.cnrs.fr

europhysics news NOVEMBER/DECEMBER 2005



EPS DIRECTORY 05/06

Vice-President E. Brezin

Ecole Normale Supérieure

Département de Physique

24 rue Lhomond

FR-75231, Paris Cedex 05, France

TEL/FAX +33 144 323 495 / +33 147 071 399
EMAIL brezin@physique.ens.fr

Treasurer J. Le Duff

Laboratoire de L'accélérateur Linéaire
Université Paris-Sud, Batiment 200
FR-91898, Orsay Cedex, France

TEL/FAX +33 164 468 430 / +33 169 071 499
EMAIL leduff@lal.in2p3.fr

Georgia

Georgian Physical Society
Secretariat N. Kevlishvili
Institute of Physics

Georgian Academy of Sciences
6 Tamarashuvili Str.

GE-380077 Thilisi, Georgia
TEL/FAX +995 32 395 626
EMAIL kev@iph.hepi.edu.ge

President J.L. Chkareuli

See contact details of the Secretariat
TEL/FAX +995 32 395 626

EMAIL jlc@physics.iberiapac.ge

Vice-Presidents
A. Gerasimov, Tbilisi State University, Georgia
Z. Saralidze, Georgian Academy of Sciences, Georgia

German Physical Society

Secretariat (Bad Honnef) M.Roth

Deutsche Physikalische Gesellschaft e.V.
Hauptstrasse 5

DE-53604 Bad Honnef, Germany

TEL/FAX +49 222 492 320 / +49 222 492 3250
EMAIL dpg@dpg-physik.de

Secretariat (Berlin) G.Ranft

Deutsche Physikalische Gesellschaft e.V.
Magnus Haus

Am Kupfergraben 7

DE-10117 Berlin, Germany

TEL/FAX +49 302 017 480 / +49 302 017 4850
EMAIL magnus@dpg-physik.de

General Secretary V.Haeselbarth

Deutsche Physikalische Gesellschaft e.V.
Hauptstrasse 5

DE-53604, Bad Honnef, Germany

TEL/FAX +49 222 492 320 / +49 222 492 3250
EMAIL dpg@dpg-physik.de

Chief Executive B.Nunner

Deutsche Physikalische Gesellschaft e.V.
Hautpstrasse 5

DE-53604 Bad Honnef, Germany

TEL/FAX +49 222 492 320/ +49 222 492 3250
EMAIL dpg@dpg-physik.de

President K. Urban

Institut fur Festkdperforschung
Forschungszentrum Julich GmbH

DE-52425 Julich, Germany

TEL/FAX +49 2 461 613 153/ +49 2 461 616 444
EMAIL k.urban@fz-juelich.de

Vice-President R.Sauerbrey

Universitat Jena

Institut fir Optik und Quantenelektronik
Max-Wien-Platz 1

DE-07743 Jena, Germany

TEL/FAX +49 3 641 947 200 / +49 3 641 947 202
EMAIL sauerbrey@iog.uni-jena.de

Treasurer H.Bechte

Stiftung Caesar

Friedensplatz 16

DE-53111,Bonn, Germany

TEL/FAX +49 2 289 656 105 / +49 2 289 656 111
EMAIL bechte@caesar.de

europhysics news NOVEMBER/DECEMBER 2005

Hellenic Physical Society

Secretariat D. Fakis
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Secretary G.A. Saevarsdottir
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Dunhagi 3
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EMAIL gudrunsa@hi.is
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Science Institute

University of Iceland
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1S-107 Reykjavik, Iceland
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IE-Dublin 2, Ireland

TEL/FAX +353 16 762 570 or 380 919/ +353 16 762 346
EMAIL s.breathnach@ria.ie
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EMAIL jboland@tcd.ie
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Secretary C.Bruma
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TEL/FAX +972 39 066 387 / +972 36 408 988
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IL-Haifa 32000, Israel
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Hebrew University of Jerusalem - Department of Physics
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Secretariat B. Alzani

Societa Italiana di Fisica
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IT-40123 Bologna, Italy

TEL/FAX +39 051 331 554/ +39 051 581 340
EMAIL sif@sif.it

President G.F.Bassani
See address of the Secretariat

Vice-President L. Cifarelli
Universita’ di Salerno, Italy
via Ponte don Melillo
IT-84084 Fisciano (SA)

Honorary President R.A.Ricci

Laboratori Nazionali di Legnaro (INFN), Italy
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Secretariat Z. Gavare
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Institute of Atomic Physics and Spectroscopy
Skunu str.4

LV-1002 Riga, Latvia

TEL +371 6 803 802

EMAIL zanda.gavare@lu.lv

President |. Javaitis
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Zellu str.8

LV-1002 Riga, Latvia

TEL +371 9 544 882

EMAIL ivars.javaitis@lu.lv
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Skunu str.4
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EMAIL bersons@latnet.lv

Lithuanian Physical Society
Secretariat

Lithuanian Physical Society

Lietuvos Fiziku Draugija

A.Gostauto 12

LT-01108 Vilnius, Lithuania

TEL/FAX +370 52 620 668 / +370 52 125 361
EMAIL [fd@itpa.lt

Secretary A.Bernotas

Vilnius University

Research Institute of Theoretical Physics and
Astronomy

A.Gostauto 12

LT-01108, Vilnius, Lithuania

EMAIL bernotas@itpa.lt

President Z.R.Rudzikas

Lithuanian Academy of Sciences

Gedimino Ave.3

LT-01103 Vilnius, Lithuania

TEL/FAX +370 52 613 651/ +370 52 124 694
EMAIL rudzikas@itpa.lt

Treasurer R. Sadzius
Vilnius University, Lithuania
A.Gostauto 12

LT-01108, Vilnius, Lithuania
EMAIL sadzius@delfi.lt

Vice-Presidents

J. Vaitkus, Vilnius University, Lithuania
EMAIL juozas.vaitkus@ff.vu.lt

S. Asmontas, State Institute of Semiconductor Physics
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EMAIL asmontas@uij.pfi.lt

Former Yugoslavic Republic of Macedonia

Society of Physicists of Macedonia
Secretariat

Society of Physicists of Macedonia

Institute of Physics

Faculty of Natural Sciences and Mathematics
PO box 162

MK-1000 Skopje, Macedonia

TEL/FAX +389 23 117 055/ +389 23 228 141
EMAIL fizmak@iunona.pmf.ukim.edu.mk

Secretary S.Topuzoski

Institute of Physics

Faculty of Natural Sciences and Mathematics
University of STS Cyril and Methodius < PO box 162
MK-1000 Skopje, Macedonia

EMAIL suzanat@iunona.pmf.ukim.edu.mk

President O. Zajkov
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University of STS Cyril and Methodius < PO box 162
MK-1000 Skopje, Macedonia

EMAIL boce@iunona.pmf.ukim.edu.mk

Republic of Moldova

Moldovan Physical Society
Secretariat M.Timoshinina

Center LISES - Academy of Sciences
Institute of Applied Physics

3/3 Academy Street

MD-2028 Chisinau, Republic of Moldova
TEL/FAX +373 2739 033 /3732739 068

General Secretary E.Condrea

Academy of Sciences

Center LISES - Institute of Applied Physics
3/3 Academy Street

MD- 2028 Chisinau, Republic of Moldova
TEL/FAX +373 2739033 /3732739068
EMAIL condrea@lises.asm.md

President V. Kantser

Academy of Sciences of Moldova
Institute of Applied Physics

5 Academy Street

MD-2028 Chisinau, Republic of Moldova
TEL/FAX +373 2739 060 / +373 2 739 068
EMAIL kantser@lises.asm.md

Vice-Presidents
l.Jeru, Moldavian State University, Chisinau
TEL/FAX +373 2 577 590
EMAIL geru@usm.md
1.Tighineanu, Moldavian Technical University, Chisinau
TEL/FAX +373 2 235 459
EMAIL tiginyanu@yahoo.com

Treasurer S. Carlig

Moldavian State University

60A Mateevici Street

MD-2009 Chisinau, Republic of Moldova
TEL/FAX +373 2272917

EMAIL carlig@usm.md

The Netherlands

The Netherlands Physical Society
Secretariat C.Langeveld

Nederlandse Natuurkundige Vereniging (NNV)
Kruislaan 409 - PO box 41882

NL-1009 bv Amsterdam, the Netherlands
TEL/FAX +31 205922 211/ + 31 205 925 155
EMAIL bureau@nnv.nl

Secretary P.J. Mulders
See address of the Secretariat

President H.van den Akker
See address of the secretariat
EMAIL vdakker@klft.tn.tudelft.nl

Treasurer G.van der Steenhoven
See address of the secretariat

European affairs E. de Wolf

NIKHEF

PO Box 41882

NL-1009 DB Amsterdam, the Netherlands
EMAIL e.dewolf@nikhef.nl

Norway

Norwegian Physical Society

Secretary H.F.Hansen

Department of Physics

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

TEL/FAX +47 73 590 726 / +47 73 597 710

EMAIL henning.hansen@phys.ntnu.no

President A.Borg

Norges Teknisk Naturvitenskapelige Universitet,
Department of Physics

NO-7491 trondheim, Norway

TEL/FAX +47 73 593 413

EMAIL anne.borg@ntnu.no

Polish Physical Society
Secretariat K. Zakowicz
Polish Physical Society
Main Board

UL.Hoza 69

PL- 00-681 Warsaw, Poland
TEL/FAX +48 226 212 668
EMAIL ptf@fuw.edu.pl

Secretary General H.Bialkowska

Institute for Nuclear Studies

High Energy Physics Department

Ul.Hoza 69

PL-00-681 Warsaw, Poland

TEL/FAX +48 225 532 234 / +48 226 212 804
EMAIL helena.bialkowska@fuw.edu.pl

President M. Kolwas

Polish Academy of Sciences, Institute of Physics
International Postgraduate Studies

al. Lotnikow 32/46

PL-2668 Warsaw , Poland

TEL/FAX +48 228 470 917 / +48 228 430 926
EMAIL kolwas@ifpan.edu.pl

Vice-Presidents

K. Chalasinska-Macukow, Warsaw University, Poland
EMAIL kmacukow@mimuw.edu.pl

R. Kulessa, Jagiellonian University, Poland
EMAIL kulessa@if.uj.edu.pl

Treasurer M. Kowalski
Warsaw University of Technology, Institute of Physics
EMAIL marko@if.pw.edu.pl

Portugal

Portuguese Physical Society

Secretariat M.J. Couceiro da Costa

Sociedade Portuguesa de Fisica

Av.da Republica, 37-4°

PT-1050-187, Lisboa, Portugal

TEL/FAX +351 217 993 665 / +351 217 952 349
EMAIL mjose@spf.pt

President J.D.Urbano
Universidade de Coimbra
Departamento de Fisica

Rua Larga

PT-3004-516, Coimbra, Portugal
TEL/FAX +351 39410 600
EMAIL urbano@teor.fis.uc.pt

Vice-Presidents

V. Amaral, Universidade de Aveiro, Portugal
EMAIL vamaral@fis.ua.pt

A. Barroso, Universidade de Lisboa, Portugal
EMAIL barroso@cii.fc.ul.pt

Treasurer A.Pedro de Jesus

Faculdade de Ciencias e Tecnologia
Universidade Nova de Lisboa
Departamento de Fisica

Quinta da Torre

PT-2825-114 Monta da Caparica, Portugal
TEL/FAX +351 294 8576 / +351 212 948 549
EMAIL apjesus@cii.fc.ul.pt

Romanian Physical Society

Secretariat M. Oancea

Institute of Physics and Nuclear Engineering — IPNE
Editorial Office (Redactia)

P.O.Box MG-6

RO-Bucharest (Magurele), Romania

TEL/FAX +40 214 042 355

EMAIL moancea_rip@yahoo.com
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General Secretary D.Grecu
Polytechnic University, Romania
EMAIL dgrecu@theor1.theory.nipne.ro

President A.Calboreanu

Tandem Laboratory

Institute of Physics and Nuclear Engineering

POB MG-6,

RO-Bucharest (Magurele), Romania

TEL/FAX +40 214 04 2300 ext.4306 / + 40 214 574 493
EMAIL calbo@ifin.nipne.ro

Vice-President V. Grecu
Faculty of Physics, Romania
EMAIL vvgrecu@olimp fiz.infim.ro

United Physical Society of the Russian Federation
Executive Secretary A.P.Kovaleva

National Committee of Russian Physicists

General Physics & Astronomy Dept.

Russian Academy of Sciences

32 a, Leninsky Prospect

RU-117993 Moscow, Russia

TEL/FAX +7 0 959 385454/ +7 0959938 1714

EMAIL alina@gpad.ac.ru

Scientific Secretary V.A. Zayats

See address of the Secretariat

TEL/FAX +7 0 959 385 500/ +7 0 959 381 714
EMAIL zayats@gpad.ac.ru

President L.V.Keldysh

See address of the Secretariat

TEL/FAX +7 0 959 385 454 / +7 0 959 381 714
EMAIL keldysh@gpad.ac.ru

Vice-President S.N. Bagayev

Institute for Laser Physics, Siberian Branch of the
Russian Academy of Sciences, Russia

See address of the Secretariat

EMAIL bagayev@laser.nsc.ru

Serbia and Montenegro

Physical Society of Serbia and Montenegro
Secretariat

Physical Society of Serbia and Montenegro

Pregrevica 118

YU-11080, Beograd-Zemun, Serbia and Montenegro
TEL/FAX +381 113 160 260 ext. 166 / +381 113 162 190
EMAIL jdf@phy.bg.ac.yu or yps@phy.bg.ac.yu

Secretary S.Prvanovic

See address of the Secretariat

TEL/FAX +381 113 160 260 ext. 177 / +381 316 2190
EMAIL prvanovic@phy.bg.ac.yu

President M.M. Popovic

See address of the Secretariat

TEL/FAX +381 113 160 598 / +381 113 160 531
EMAIL marko@phy.bg.ac.yu

Vice-Presidents

1. Savic, See address of the secretariat
TEL/FAX +381 113 160 260 / +381 113 162 190

P. Miranovic, University of Montenegro, Podgorica
TEL/FAX +381 81 245 309/ +381 81 244 608
EMAIL pedjam@dell.pmf.cg.acyu

Slovak Physical Society

Secretariat

Slovak Physical Society

Dubravska Cesta 9

SK - 245 27-BR-45, Bratislava, Slovak Republic
EMAIL sfs@savba.sk

Secretary General D.Krupa

Slovak Academy of Sciences

Institute of Physics

Dubravska Cesta 9

SK - 845 11-BR-45, Bratislava, Slovakia

TEL/FAX +421 259410 514 / +421 254 776 085
EMAIL fyzikrup@savba.sk
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President J. Stanicek

Faculty of Mathematics, Physics and Informatics
Comenius University

Mlynska Dolina

SK-842 15 Bratislava, Slovakia

TEL/FAX +421 260 295 454 / +421 265 425 882
EMAIL stanicek@fmph.uniba.sk

Vice-President M. Reiffers

Institute of Experimental Physics

Watsonova 47

SK-043 53, Kosice, Slovakia

TEL/FAX +421 556 228 158 / +421 556 336 292
EMAIL reiffers@saske.sk

Treasurer J. Bohacik

Slovak Academy of Sciences

Institute of Physics

Dubravska Cesta 9

SK - 845 11-BR-45, Bratislava, Slovakia
EMAIL bohacik@savba.sk

Society of Mathematicians, Physicists and
Astronomers of Slovenia

Secretariat J. Krusic

University of Ljubljana - Department of Mathematics
Jadranska 19

SI-1000 Ljubljana, Slovenia

TEL/FAX +386 14 766 559 / +386 12 517 281

EMAIL janez.krusic@fmf.uni-lj.si

Secretary J. Krusic
See address of Secretariat

President Z.Trontelj

See address of Secretariat

TEL/FAX +386 14 766 582 / +386 12 517 281
EMAIL zvonko.trontelj@fiz.uni-lj.si

Vice-President Z. Smit

University of Ljubljana - Department of Physics
Jadranska 19

SI-1000 Ljubljana, Slovenia

EMAIL ziga.smit@fmf.uni-lj.si

Treasurer A. Jaklic

University of Ljubljana

SI-1000 Ljubljana, Slovenia
EMAIL andreja.jacklic@fdv.uni-lj.si

Spanish Royal Society of Physics
Secretariat C.Z. Exposito

Real Sociedad Espanola de Fisica

Facultad de Ciencias Fisicas

Universidad Complutense de Madrid

ES-28040 Madrid, Spain

TEL/FAX +34 13 944 359 or 361 / +34 15 433 879
EMAIL rsef@fis.ucm.es

Secretary General A. Dobado Gonzalez
Departamento de Fisica Teorica
Facultad de Ciencias Fisicas

Universidad Complutense de Madrid
ES-28040 Madrid, Spain

EMAIL dobado@fis.ucm.es

President G. Delgado Barrio

Instituto de Fisica Fundamentale

Serrano 123 - CSIC

ES-28006 Madrid, Spain

TEL/FAX +34 915 855 196 / +34 915 855 398
EMAIL gerardo@imaff.cfmac.csic.es

Vice-Presidents

A. Ferrer Soria, IFIC-Universidad de Valencia, Burjassot
(Valencia), Spain
EMAIL antonio.ferrer@ific.uv.es

J. M. Fernandez de la Bastida, Universidad de
Santiago de Compostela, Spain
EMAIL labasti@fpaxpl.usc.es

Treasurer V.R.Velasco Rodriguez
Instituto de Ciencias de Materiales,
ES-Cantoblanco, 28049 Madrid , Spain
EMAIL vrvr@icmm.csic.es

Swedish Physical Society
Secretariat

Swedish Physical Society

Manne Siegbahn Laboratory
Frescativdgen 24

SE-104 05 Stockholm, Sweden
EMAIL kansliet@fysikersamfundet.se

Secretary H.Danared

Manne Siegbahn Laboratory
Frescativagen 24

SE-104 05, Stockholm, Sweden
TEL/FAX +46 8 161 038 / +46 8 158 674
EMAIL danared@msl.se

President B.Jonson

Fundamental Physics

Chalmers University of Technology

SE-412 96, Géteborg, Sweden

TEL/FAX +46 317 723 262 / +46 317 723 269
EMAIL bjn@fy.chalmers.se

Treasurer H.Lundberg

Atomic Physics

Lund Institute of Technology

Box 118

SE-221 00 Lund, Sweden

TEL/FAX +46 2 227 854 / +46 2 224 250
EMAIL hans.lundberg@fysik.Ith.se

Swiss Physical Society

Secretariat S. Albietz

Swiss Physical Society

SPG Biiro

Universitaet Basel

Institut fur Physik

Klingelbergstrasse 82

CH-4056 Basel, Switzerland

TEL/FAX +41 612673 686 / +41 612 673 784
EMAIL sps@unibas.ch
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Secretary B. Braunecker

Leica Geosystems AG

CTC System Modeling & Optics Dev.

CH-9435 Heerbrugg, Switzerland

TEL/FAX +41 717 273 577 / +41 717 265 577

EMAIL bernhard.braunecker@leica-geosystems.com

President J.P. Ansermet

EPFL -IPE Ecublens

Institut de Physique Expérimentale
CH-1015 Lausanne, Switzerland

TEL/FAX +41 216 933 339/ +41 216 933 604
EMAIL jean-philippe.ansermet@epfl.ch

Vice-President A. Ziittel

Université de Fribourg, Département de Physique
Pérolles

CH-1700 Fribourg, Switzerland

TEL/FAX +41 263 009 086 / +41 263 009 747
EMAIL andreas.zuettel@unifr.ch

Treasurer T.Gyalog

Universitét Basel, Institut fur Physik
Petersplatz 1, Postfach

CH-4003 Basel, Switzerland

EMAIL tibor.gyalog@unibas.ch

Turkish Physical Society

Secretary General L. Amon

Istanbul University - Department of Physics

Nuclear Physics Division

Faculty of Sciences

TR-34459, Vezneciler - Istanbul, Turkey

TEL/FAX +90 2 124 555 700 or 515 504 / +90 5 190 834
EMAIL lidyamon@istanbul.edu.tr

President B. Akkus

See contact details of the Secretary General
EMAIL akkus@istanbul.edu.tr
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Vice-President Y. Oktem

Istanbul University - Department of Physics
Nuclear Physics Division

Faculty of Sciences

TR-34459 Vezneciler-Istanbul, Turkey
TEL/FAX +90 2 124 555 700 / +90 5 190 834
EMAIL sgyks@istanbul.edu.tr

Treasurer P.Can
EMAIL pcan@istanbul.edu.tr

Ukrainian Physical Society

Executive Secretary K.V. Usenko

Taras Shevchenko National Kyiv University
Faculty of Physics

Prosp. Glushkova 2, Korp. 1

UA-03680 Kyiv, Ukraine

TEL/FAX +380 442 663 060 / +380 442 664 036
EMAIL usenko@phys.univ.kiev.ua

President V.T.Litovchenko

Insitute for Semiconductor Physics of the NASU
Division for Surface Physics and Microelectronics
Prop. Nauki 41

UA-03680 Kyiv, Ukraine

TEL/FAX +380 445 256 290 / 265 6207

EMAIL lvg@isp.kiev.ua

Vice-Presidents

S.G. Nedilko, Taras Shevchenko National University of
Kyiv
EMAIL snedilko@univ.kiev.ua

V.A. Shenderovskiy, Institute of Physics of the Nasu
EMAIL shender@iop.kiev.ua

M.F. Shul'ga, Institute of Theoretical Physics of the
NSC, NASU
EMAIL shulga@kipt.kharkov.ua

V.A. Smyntyna, Odessa National University
EMAIL oguint@paco.net

L.V. Stasyuk, Institute for Condensed Matter Physics
of the NASU
EMAIL ista@icmp.lviv.ua

United Kingdom

The Institute of Physics

Secretariat

The Institute of Physics

76 Portland Place

UK-W1B 1NT, London, England

TEL/FAX +44 207 470 4800 / +44 207 470 4848
EMAIL physics@iop.org

Chief Executive R. Kirby-Harris
See contact details of the secretariat
EMAIL robert.kirby-harris@iop.org

President Sir J.E.Enderby
See contact details of the secretariat
EMAIL physics@iop.org

Contact Person PH. Melville
See contact details of the Secretariat
EMAIL peter.melville@iop.org

Honorary Secretary J. Beeby
University of Leicester

University road 17

UK-Leicester LE1 7RH, United Kingdom
EMAIL zjb@le.ac.uk

Honorary Treasurer J.A. Scott

University College, Physics Department
IRL-Dublin 4, Belfield, Ireland

TEL/FAX +353 17 061 681 / +353 126 928 366
EMAIL tony.scott@ucd.ie

ASSOCIATE MEMBERS

BESSY GmbH

T.Frederking

Head of Administration

Albert-Einstein-Str. 15

DE-12489 Berlin, Germany

TEL/FAX +49 03 063 922 999 / +49 03 063 922 990
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CEA Saclay

Mrs Gillot

FR-91191 Gif-sur-Yvette Cedex, France
TEL/FAX +33 169 082 473/ +33 169 083 816

CERN

M. Metzger

CH-1211 Geneva 23, Switzerland

TEL/FAX +41 22 767 3374 / +41 22 767 8995
EMAIL maximilian.metzger@cern.ch

CNR - INFM

Consiglio Nazionale delle Ricerche

Istituto Nazionale per la Fisica della Materia
Dipartimento per le Attivita Internazionali

Servizion | sezione ‘Organismi Internazionali’

Piazzale Aldo Moro 7

IT-00185 Roma, Italy

TEL/FAX +39 064 993 2057 or 3170/ +39 064 993 2905
EMAIL v.codanunziante@dai.cnr.i

DESY

Directorates Office

Notkestrasse 85

DE-22603 Hamburg, Germany

TEL/FAX +49 4 089 983 100 / +49 4 089 983 282

DLR

DLR

German Aerospace Center

Linder Hoehe

DE-51170 K&ln, Germany

TEL/FAX +49 22 036 010/ +49 22 036 7310
EMAIL sigmar.wittig@dIr.de

EDP Sciences

J.P.Hurault

17,avenue du Hoggar * BP 112

PA de Courtaboeuf

FR-91944 Les Ulis Cedex A, France

TEL/FAX +33 169 187 575 / +33 169 288 491
EMAIL hurault@edpsciences.org

EFDA - JET

K1-1-96

J.Pamela, Head

EFDA Close Support Unit

Culham Science Centre

UK-Abingdon, Oxon, OX14 3DB, United Kingdom
TEL/FAX +44 1 235 464 400 / +44 1 235 464 415
EMAIL jerome.pamela@jet.efda.org

EPFL - CRPP

Association EURATOM - Confédération Suisse
CRPP-EPFL PPB

Prof.M.Q.Tran

CH-1015, Lausanne, Switzerland

TEL/FAX +41 216 035 474/ +41 216 935 176
EMAIL minhquang.tran@epfl.ch

EPFL-Ecublens - IPE

J.P.Ansermet

Département de Physique

CH-1015, Lausanne, Switzerland

TEL/FAX +41 216 933 339/ +41 216 933 604
EMAIL jean-philippe.ansermet@epfl.ch

ESA

D.Southwood

Director of Scientific Programme

8-10.rue Mario Nikis

FR-75738 Paris Cedex 15, France

TEL/FAX +33 153 697 107 / +33 153 697 236
EMAIL david.southwood@esa.int

ESRF

W.G. Stirling

Director General

6 rue Jules Horowitz - BP 200

FR-38043 Grenoble Cedex, France

TEL/FAX +33 476 882 030/ +33 476 882 418
EMAIL stirling@esrf.fr

FNRS

E.Kokkelkoren

Conseillere FNRS/CREF

5 rue d’Egmont

BE-1000, Bruxelles, Belgium

TEL/FAX +32 25 049 300 / +32 25 140 006
EMAIL kokkelkoren@cref.be

FOM

K.H.Chang

Postbus 3021

NL-3502 GA, UTRECHT, Netherlands
TEL/FAX +31 306 001 226 / +31 306 014 406
EMAIL hans.chang@fom.nl

Forschungszentrum Jiilich GmbH

J.Treusch

Head of the Board of Directors

DE-52425 Julich, Germany

TEL/FAX +49 2 461 613 000 / +49 2 461 612 525
EMAIL j.treusch@fz-juelich.de

GSI

Wissenschaftlicher Direktor

Postfach 11 05 52

DE-64220 Darmstadt, Germany

TEL/FAX +496 159710/ +496 159712 785

Hahn-Meitner-Institut Berlin GmbH (HMI)
M. Steiner

Scientific Director

Glienicker Str. 100

DE-14109 Berlin, Germany

TEL/FAX +49 3 080 622 762 / +49 3 080 622 047
EMAIL steiner@hmi.de

IFE - Institutt for Energiteknikk
K.H.Bendiksen

Managing Director « PO Box 40

NO-2007, Kjeller, Norway

TEL/FAX +47 63 806 000 / +47 63 816 356
EMAIL bendiksen@ife.no

ILL - Institut Max von Laue-Paul Langevin
C.J.Carlile

Director

6.rue Jules Horowitz

FR-38042 Grenoble Cedex 9, France

TEL/FAX +33 476 207 100 / +33 476 961 195
EMAIL carlile@ill.fr

IMEC - Interuniversity Micro-Electronics Entre
G.Declerck

Kapeldreef 75

BE-3001 Leuven, Belgium

TEL/FAX +32 16 281 211/ +32 16 229 400

INFN - Istituto Nazionale di Fisica Nucleare
E.larocci

CP 56

IT-00044, Frascati, Italy

TEL/FAX +39 069 403 573 / +39 069 403 582
EMAIL iarocci@inf.infn.it

Institut “Jozef Stefan”

V.Turk

Jamova 39 - PO Box 3000

SI-1001 Ljubljana, Slovenia

TEL/FAX +386 14 773 900 / +386 12 519 385
EMAIL vito.turk@ijs.si

10P Publishing Ltd

Dirac House

Temple Back 16

UK-Bristol BS1 6BE, United Kingdom

TEL/FAX +44 1179297 481/ +44 1 179 251 942
EMAIL kurt.paulus@ioppublishing.co.uk

JINR - Joint Institute for Nuclear Research
V.Kadyshevsky

Director

RU-141980, Dubna-Moscow region, Russia
TEL/FAX +7 0 962 162 243 / +7 0 956 327 880
EMAIL kadyshev@jinr.ru

MPI - Max-Planck Insitut fuer Festkoerperforschung
C.Irslinger

Postfach 80 06 65

DE-70506, Stuttgart, Germany

TEL/FAX +497 116 891470/ +497 116 891 472
EMAIL www@fkf.mpg.de

MPI - Max-Planck-I
H.-S.Bosch
Scientific and Technical Office - Postfach 1533
DE-85740, Garching, Germany

TEL/FAX +49 8 932992 112/ +49 8 932 991 001
EMAIL bosch@ipp.mpg.de
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NORDITA

P.Minnhagen

Blegdamsvej 17

DK-2100, Copenhagen, Denmark
TEL/FAX +45 35 325 500 / +45 35 389 157
EMAIL nordita@nordita.dk

PSI - Paul Scherrer Institut

R.Eichler

CH-5232 Villigen PSI, Switzerland

TEL/FAX +41 563 103 216 / +41 563 102 717
EMAIL ralph.eichler@psi.ch

PTB - Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

E.O.Gobel

Postfach 33 45

DE-38023 Braunschweig, Germany

TEL/FAX +49 5315921 000/ +495 315921 005
EMAIL ernst.0.goebel@ptb.de

SIA - Societa Italiana Avionica

M. Panighini

Via G.Servais 125

IT-10146 Torino, Italy

TEL/FAX +390117720111/+390 117 256 79
EMAIL panighini@sia-av.it - mariani@sia-av.it

Sincrotrone Trieste ScpA

A.Franciosi

Managing Director

S.S.14 KM.163,5

Area Science Park

IT-34012, Basovizza-Trieste, Italy

TEL/FAX +39 04 037 581 / +39 0 409 380 902
EMAIL elisabetta.dimitri@elettra.trieste.it

SIEMENS Building - Technologies AG
Fire and Security Products

Alte Landstrasse 411

CH-8708, Mannedorf, Switzerland
TEL/FAX +41 19226 111/ +41 19 226 969
EMAIL gustav.pfister@siemens.com

SISSA

S.Fantoni

Via Beirut 2-4

IT-34014 Trieste, Italy

TEL/FAX +39 403 787 581 / +39 403 787 528
EMAIL director@sissa.it

Université Joseph Fourier

Y.Vallee

BP 53

FR-38041 Grenoble Cedex 09, France
TEL/FAX +33 479514086 / +33 476 514 252

Université de Fribourg

Département de Physique

A.Weis

Chemin du Musée 3

CH-1700 Fribourg, Switzerland

TEL/FAX +41 263 009 060 / +41 263 009 747
EMAIL antoine.weis@unifr.ch

University of Geneva

R.Fltkiger

Director Physics Section

24,Quai Ernest Ansermet

CH-1211 Geneva 4, Switzerland

TEL/FAX +41 227 026 240 / +41 227 026 869
EMAIL rene.flukiger@physics.unige.ch

University of Zurich

H.Keller

Universitat Zrich

Physik Institut

Winterthurerstrasse 190

CH-8057 Zurich, Switzerland

TEL/FAX +41 16 355 721 / +41 16 355 704
EMAIL keller@physik.unizh.ch

Wilhelm und Else Heraeus-Stiftung
E.Dreisigacker

Postfach 15 53

D-63405, Hanau, Germany

TEL/FAX +49 6 181 923 250/ +49 6 181 923 2515
EMAIL dreisigacker@we-heraeus-stiftung.de
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RECOGNISED JOURNALS

Bulgarian Physical Society
The Bulgarian Journal of Physics

Croatian Physical Society
Fizika A
Fizika B

Czech Republic Academy of Physics, Institute of
Physics
Czechoslovak Journal of Physics

EDP Sciences

Astronomy and Astrophysics

The European Physical Journal: Applied Physics
Journal de Physique IV - proceedings

EDP Sciences - European Physical Society
Europhysics news

EDP Sciences - European Physical Society - Societa
Italiana di Fisica
Europhysics letters

EDP Sciences - Societa Italiana di Fisica - Spinger
Verlag

The European Physical Journal B

The European Physical Journal D

The European Physical Journal E: Soft Matter

Education and Upbringing Publishing
Nonlinear Phenomena in Complex Systems

Elsevier Science Publishers B.V.
Computer Physics Communications
Physica A

Physica B

Physica C

Estonian Academy of Sciences
Physics Mathematics

Institute of Physics Publishing

Classical and Quantum Gravity

Combustion Theory and Modelling

European Journal of Physics

High Performance Polymers

Inverse Problems

Journal of Micromechanics and -Microengineering

Journal of Optics A: Pure and Applied Optics

Journal of Optics B: Quantum and Semiclassical
Optics

Journal of Physics A: Mathematical and General

Journal of Physics B: Atomic, Molecular and Optical

Journal of Physics D: Applied physics

Journal of Physics G: Nuclear and Particle Physics

Journal of Physics: Condensed Matter

Measurement Science and Technology

Modelling and Simulation in Material Science and
Engineering

Nanotechnology

Network: Computation in Neural Systems

Nonlinearity

Physics in Medicine and Biology
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