GENERAL THEORY

Generalized entropy and thermostatistics: [1]
H-theorem and irreversibility: [2966–3025]
Ehrenfest theorem, von Neumann equation: [3, 3026–3032]
Quantum statistics: [3033–3161]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [3050, 3162–3261]
Langevin and Fokker-Planck equations: [2970–2992, 2995–3002, 3004–3040, 3238–3241, 3243–3444, 3446–3800]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 3801–3823]
Poisson equation: [3824–3840]
Callen identity: [3841]
Ising transmissivity: [3842]
Classical equipartition principle: [3843–3845]
Connection with quantum uncertainty: [3846–3900]
Connection with Fisher information measure: [3901–3915]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 90–98, 3128, 3916–4134, 4136–4415]
Connection with general relativity, cosmology, dark energy, string theory: [3902, 4416–4422, 4424–4606]
Connection with quantum groups and quantum mechanics: [4607–4657]
Connection with wavelets; Signal processing; EEG: [4658–4772]
Connection with quantum correlated many-body problems: [4773–4785]
Connection with the Gentile and the exclusion Haldane statistics: [4786–4789]
Connection with finite systems: [3801, 4786]
Rigorous results (generalized entropy and thermostatistics): [3920–3925, 4790–4795]
Integral transformations (Hilhorst and Prato formulae): [3038, 3801, 4796–4799]

ONE-BODY SYSTEMS

Two-level system: [1, 4800]
Harmonic and anharmonic oscillators: [1541–1560, 4794–4802]
Free particle: [4803–4808]
Larmor precession: [3028]
Rigid rotator: [4798–4804, 4809–4812]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 9985 articles from 16850 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose classification and indexation are, however, only indicative.

MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [3801–3843, 4796–4803, 4809–4872]
Independent spin paramagnet, Landau magnetism: [4613–4619, 4873–4880]
Black-body radiation and photonic systems: [4881–4943]
\(d = 1\) Ising ferromagnet: [4944–4948]
\(d \geq 2\) Ising and other ferromagnets: [3842, 4949–4998]
Infinite-range Ising ferromagnet: [4999]
Potts ferromagnet, Molecular field approximation: [3841, 4966–4985, 4990–5003]
Percolation: [5004–5006]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [5007–5064]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [3220, 3824, 3902, 5065–5244]
Lévy-like and correlated anomalous diffusion: [18, 3338, 3339, 3410–3435, 3437–3444, 3446–3461, 5245–5310, 5318–5325]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [3824, 5290–5319, 5326–5672]
Ferrofluid-like materials, Lennard-Jones and other fluids: [4990, 6371, 6379–6401]
Solitons: [6402, 6403]
Plasma (electron velocity distribution, magnetohydrodynamics): [6404–6961]
Glass, Spin-glass: [6962–7002]
Superfluid helium; Bose-Einstein condensation: [7003–7027]
Test of Boltzmann-Gibbs thermostatistics: [4436, 4908, 4909]
Cosmic rays; Elementary particles: [7026–7282]
Biological systems; Microemulsions; Liquid crystals: [7283–7425]
Stochastic resonance; Brownian motors: [7426–7451, 7454, 7456–7471]
Connection with the Theory of perceptions: [18, 19]
Connection with the Theory of finances: [7443–7688]
Consistent testing; Statistical inference; Theory of probabilities: [976–981, 983–992, 994–1066, 3216, 7690–7782, 7784?]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [3239, 4977, 8078–8514, 85167–8521]
Neural and other networks: [986, 7378, 7379, 8522–8654, 8656–8670]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [4658–4686, 8671–9364]
Geophysics: [4685, 4686, 8761, 9365–9465]
Medicine; Tomography: [4687–4694, 8671–8673, 9025, 9466–9565]
Symbolic dynamics, linguistics, philology, cognitive sciences, social sciences, hydrology, ecology: [3972–3982, 3984–4005, 4009–4032, 8013, 9566–9583, 9585–9764]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [912, 9765–9985]
References

[142] N.K. Kollas, Generalized entanglement in quantum information theory - Optimization free measures and faithful extraction protocols, Doctor Thesis (Physics Department, University of Patras, Greece, 2020).

[246] R. Jiang, P. Shang and B. Zhang, *Dispersion complexity-entropy curves: an effective method to detect the structures of complex systems*, preprint (2023), 10.21203/rs.3.rs-276562/v1

M.V. Jankovic, *Quantum Tsallis entropy and projective measurement*, preprint (2009), 0904.3794 [physics.data-an].

[303] K. Olimov, Analysis of midrapidity p_T distributions of identified charged particles in Xe + Xe collisions at $\sqrt{s_{NN}} = 5.44\text{TeV}$ using non-extensive Tsallis statistics with included transverse flow, communication at QNP2022, The 9th International Conference on Quarks and Nuclear Physics (2022).

M. Dheepika, V.T.H. Basari and T.K. Mathew, *Emergence of cosmic space in Tsallis modified gravity from equilibrium and non-equilibrium thermodynamic perspective*, preprint (2022), 2211.14039 [gr-qc].

S.H. Shekh, *$(\omega_T - \omega_{T}^{\prime})$-phase space analysis of interacting Tsallis holographic dark energy in $f(Q)$ gravity*, New Astronomy (2023), in press.

27

[701] Q.A. Wang, L. Nivanen, A. Le Mehaute and M. Pezeril, Note on Abe’ s general pseudoadditivity for noneextensive systems, preprint (2001) [cond-mat/0111541].

32

33

B. Atenas and S. Curilef, *Relationship between the average kinetic energy and the temperature out of equilibrium*, communicated at the Workshop on Statistical Physics, (Antofagasta, Chile, 19-20 December 2019).

H. Touchette, *When is a quantity additive, and when is it extensive?*, Physica A 305, 84 (2002).

[1014] A.A.B. Pessa and H.V. Ribeiro, ordpy: A Python package for data analysis with permutation entropy and ordinal network methods, Chaos 31 (6), 063110 (2120).

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>G. Rotundo</td>
<td>Black-Scholes-Schrödinger-Zipf-Mandelbrot model framework for improving a study of the coauthor core score</td>
<td>Physica A</td>
<td>296-301</td>
</tr>
<tr>
<td>2023</td>
<td>A.V. Miransky, M. Davison, M. Reesor and S.S. Murtaza</td>
<td>Using entropy measures for comparison of software traces</td>
<td>Information Sciences</td>
<td>59-72</td>
</tr>
<tr>
<td>2015</td>
<td>S. Bwanakare, M. Cierpial-Wolan and A. Mantaj</td>
<td>Predicting gross domestic product components through Tsallis entropy econometrics</td>
<td>Proceedings 8th Polish Symposium of Physics in Economy and Social Sciences FENS (Rzeszow, November 4-6, 2015)</td>
<td>971-979</td>
</tr>
<tr>
<td>2020</td>
<td>M.Z. Anis</td>
<td>The Unit-Gompertz distribution: Characterizations and properties</td>
<td>preprint</td>
<td>2010.04347 [math.ST]</td>
</tr>
<tr>
<td>2016</td>
<td>K. Gajowniczek, A. Orlowski and T. Zabkowski</td>
<td>Entropy based trees to support decision making for customer churn management</td>
<td>Proceedings 8th Polish Symposium of Physics in Economy and Social Sciences FENS (Rzeszow, November 4-6, 2015)</td>
<td>971-979</td>
</tr>
<tr>
<td>2020</td>
<td>M.Z. Anis</td>
<td>The Unit-Gompertz distribution: Characterizations and properties</td>
<td>preprint</td>
<td>2010.04347 [math.ST]</td>
</tr>
<tr>
<td>2016</td>
<td>K. Gajowniczek, A. Orlowski and T. Zabkowski</td>
<td>Entropy based trees to support decision making for customer churn management</td>
<td>Proceedings 8th Polish Symposium of Physics in Economy and Social Sciences FENS (Rzeszow, November 4-6, 2015)</td>
<td>971-979</td>
</tr>
<tr>
<td>2020</td>
<td>M.Z. Anis</td>
<td>The Unit-Gompertz distribution: Characterizations and properties</td>
<td>preprint</td>
<td>2010.04347 [math.ST]</td>
</tr>
<tr>
<td>2016</td>
<td>K. Gajowniczek, A. Orlowski and T. Zabkowski</td>
<td>Entropy based trees to support decision making for customer churn management</td>
<td>Proceedings 8th Polish Symposium of Physics in Economy and Social Sciences FENS (Rzeszow, November 4-6, 2015)</td>
<td>971-979</td>
</tr>
<tr>
<td>2020</td>
<td>M.Z. Anis</td>
<td>The Unit-Gompertz distribution: Characterizations and properties</td>
<td>preprint</td>
<td>2010.04347 [math.ST]</td>
</tr>
<tr>
<td>2016</td>
<td>K. Gajowniczek, A. Orlowski and T. Zabkowski</td>
<td>Entropy based trees to support decision making for customer churn management</td>
<td>Proceedings 8th Polish Symposium of Physics in Economy and Social Sciences FENS (Rzeszow, November 4-6, 2015)</td>
<td>971-979</td>
</tr>
</tbody>
</table>

Y.J. Fan and H.X. Cao, Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information, Quantum Inf. Process 14, 4537-4555 (2015), doi: 10.1007/s11128-015-1126-6

J.P. Vigneaux, The structure of information: From probability to homology, Doctor Thesis (Universite Paris Diderot, 2017), 1709.07807 [cs.IT].

J.P. Vigneaux, A characterization of generalized multinomial coefficients related to the entropic chain rule, Aequationes Mathematicae (2023), doi: 10.1007/s00010-022-00938-7

D.H.E. Gross, Comment on “Nonextensivity: from low-dimensional maps to Hamiltonian systems” bt Tsallis et al., preprint (2002) [cond-mat/0210448].

R.S. Johal, Zeroth law of thermodynamics and the transformation from nonextensive to extensive framework, preprint (2002) [cond-mat/0207268].

F.Q. Potiguar and U.M.S. Costa, Numerical calculation of the energy relative fluctuation for a system in contact with a finite heat bath, preprint (2003) [cond-mat/0302593].

S. Abe, Thermodynamic entropy of nonextensive systems, Mathematical Sciences 450, 51 (2002) [In Japanese].

[1252] H. Farfan-Bachiloãœ, S. Curilef and F. Calderon, Q-triplet characterization of atmospheric time series at Antofagasta: A missing values problem, communication at III International Workshop on Statistical Physics (13th-15th of December 2023, Antofagasta, Chile)

[1343] L. Pan and Y. Deng, A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function, Entropy 20, 842 (2018), doi: 10.3390/e20110842

[1394] N. Minculete and S. Furuichi, Types of entropies and divergences with their applications, Entropy 25, 198 (2023), doi: 10.3390/e25020198

F. Shafee, Nonextensive entropy, prior PDFs and spontaneous symmetry breaking, preprint (2008), 0810.1072 [cond-mat.stat-mech].
F. Shafee, Generalized entropy from mixing: Thermodynamics, mutual information and symmetry breaking, preprint (2009), 0906.2458 [cond-mat.stat-mech].
T. Yamano, Generalized symmetric mutual information applied for channel capacity, preprint (2001) [cond-mat/0102322].
C. Tsallis, Is the entropy S_q extensive or nonextensive?, in Complexity, Metastability and Nonextensitivity, eds. C. Beck, G. Benedek, A. Rapisarda and C. Tsallis (World Scientific, Singapore, 2005), page 13 [cond-mat/0409631].

S. Umarov, q-central limit theorems, Tsallis q-statistics, and applications, communicated at Joint Meeting of Boston Chapter of the American Statistical Association and the New Hampshire Chapter of the IEEE Communications and Signal Processing (October 2010).

M. Jauregui and C. Tsallis, Comentarios sobre a q-transformada de Fourier, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

A. Plastino and M.C. Rocca, Reflections on the q-Fourier transform and the q-Gaussian function, Physica A 392 (18), 3952-3961 (2013).

[1697] O. Kharazmi, J.E. Contreras-Reyes and N. Balakrishnan, Optimal information, Jensen-RIG function and α-Onicescu’s correlation coefficient in terms of information generating functions, Physica A 609, 128362 (2023).

76

(University of Maryland, College Park, 2019).
(University of Louisiana, 2018).
(2021), in press, doi: 10.1109/IJQRM-09-2019-0283

[2196] A. Cabo, Is the Tsallis q-mean value instable?, preprint (2010), 1010.5825 [cond-mat.stat-mech].

[296] X. Feng, *The Tsallis entropy and the Boltzmann entropy applicable to the same classic generalized system*, World Chinese Forum on Science of General Systems (WCFSGS) **6** (S1), Total No. 49 (2010) [ISSN 1936-7260].

A.N. Hatzinikitas, Self-similar solutions of Renyi’s entropy and the concavity of its entropy power, Entropy 17, 6056-6071 (2015), doi:10.3390/e17096056

Y. Sakai, Generalized Fano-type inequality for countably infinite systems with list-decoding, preprint (2018), 1801.02876 [cs.IT].

[2652] I.V. Toranzo, S. Zozor and J.M. Brossier, Generalization of the de Bruijn’s identity to general Φ-entropies and Φ-Fisher informations, preprint (2016), 1611.09400 [cs.IT].
[2653] F. Pavese, On the definition of the measurement unit for extreme quantity values: Some considerations on the case of temperature and the Kelvin scale, arxiv 1612.07161.

101

[2691] A. Di Vita, Exponential or power law? How to select a stable distribution of probability in a physical system, preprint (2017), 1711.07811 [physics.class-ph].

C. Tsallis and E.P. Borges, Comment on “Pricing of financial derivatives based on the Tsallis statistical theory” by Zhao, Pan, Yue and Zhang, Chaos, Solitons and Fractals 148, 111026 (2021).

B. Shang and P. Shang, Multivariate synchronization curve: A measure of synchronization in different multivariate signals, Chaos 31, 123121 (2021), doi: 10.1063/5.0064807

F.T. Varela, Propiedades del estimador de la entropia de permutacion y su aplicacion en problemas de ingenieria, Tesis de Doctorado en Ingenieria (2018, Instituto Tecnologico de Buenos Aires).

[2893] A.S. Parvan, Proof of invariance of the Tsallis-1 statistics under the overall energy shift, preprint (2021), 2108.05702 [cond-mat.stat-mech].

[2915] I.A Mageed and K.Q. Zhang, The Renyian-Tsallisian formalisms of the stable M/G/1 queue with heavy tails entropy threshold theorems for the squared coefficient of variation with potential applications to computer science, engineering and technology, Electronic Journal of Computer Science and Information Technology 9 (1), (2023).

[2917] I.A. Magged, Where the mighty trio meet: Information theory (IT), Pathway model theory (PMT) and Queueing theory (QT), 39th Annual UK Performance Engineering Workshop University of Birmingham (2023).

[2918] I.A. Mageed, Rényi’s maximum entropy formalism of heavy-tailed queues with Hurst exponent heuristic mean queue length combined with potential applications of Hurst exponent to engineering, 39th Annual UK Performance Engineering Workshop University of Birmingham (2023).

[2922] A.N. Tawfik, A. Aboanbar and A. Ghoneim, On exp and log distributions in extensive and nonextensive statistical mechanics, preprint (2022), doi: 10.21203/rs.3.rs-2229064/v1

[2932] A.A.P. Rezende, Generalized conditional entropies and applications to channel ordering and design, Doctor Thesis (School of Electronic Engineering and Computer Science, Queen Mary University of London, 2023).

[2941] H. Lanteri, Generalisation des divergences par application du Logarithme deforme - Applications aux problemes inverses lineaires - Algorithmes d’ inversion, hal-0405569a (2023) [Generalization of divergences by application of the deformed logarithm - Applications to linear inverse problems - Inversion algorithms, arXiv 2304.01941 [math.GM]]

110

128

[3445] M. Mustakim and A.V.A. Kumar, *Depletion induced demixing and crystallization in binary colloids subjected to an external potential barrier*, preprint (2021), 2108.07449 [cond-mat.soft].

K. Gangopadhyay, N. Defenu, T. Donner, T. Macri, G. Pagano, S. Ruffo and A. Trombettoni,
Fractal binary sequences: Tsallis thermodynamics and Zipf law
U. Tirnakli, A.R.R. Papa, T.L. Van Den Berg, D. Fanelli and X. Leoncini,
G.B. De Luca, N. De Ponti, A. Mondino and A. Tomasiello,
R. Cafiero, A. Valleriani and J.L. Vega,
U. Tirnakli, C. Tsallis and M.L. Lyra,
H.A. Tanaka, I. Nishikawa, J. Kurths, Y. Chen and I.Z. Kiss,
C. Tsallis and M.P. de Albuquerque,
A generalized Kolmogorov-Sinai entropy
G.R. Guerberoff,
U. Tirnakli, C. Tsallis and M.L. Lyra,
F.A. Tamarit, S.A. Cannas and C. Tsallis,
U. Tirnakli and M.L. Lyra,
F.C. Santos, I.C. Moreira and M.A. de Almeida,
G. Wang, S. Zheng and J. Wang,
M. Proks,
U. Tirnakli, C. Tsallis and M.L. Lyra,
U. Tirnakli and M. Lyra,
A.R.R. Papa and C. Tsallis,
R.S. Johal and U. Tirnakli,
R. Cafiero, A. Valleriani and J.L. Vega,
C. Anteneodo and C. Tsallis,
U. Tirnakli, C. Tsallis and M.L. Lyra,
U. Tirnakli, Asymmetric unimodal maps: Some results from q-generalized bit cumulants,
U. Tirnakli, C. Tsallis and M.L. Lyra,
U. Tirnakli, Asymmetric unimodal maps at the edge of chaos,
U. Tirnakli,
R.S. Johal and U. Tirnakli,
R. Cafiero, A. Valleriani and J.L. Vega,
C. Anteneodo and C. Tsallis,
N. Defenu, T. Donner, T. Macri, G. Pagano, S. Ruffo and A. Trombettoni,
Y.Y. Yamaguchi and K. Kaneko,
G.B. De Luca, N. De Ponti, A. Mondino and A. Tomasiello,
T.L. Van Den Berg, D. Fanelli and X. Leoncini,
A.R.R. Papa,
G.R. Guerberoff,
F. Calvo,
F.C. Santos, I.C. Moreira and M.A. de Almeida,
I.C. Moreira and M.Q. Lopes,
U. Tirnakli, C. Tsallis and M.L. Lyra,
S. Denisov,
K. Gangopadhyay,
C. Tsallis and M.P. de Albuquerque,

[4137] E. Sanchez, Aplicacion de un modelo no-extensivo generalizado a la distribucion de frecuencias de magnitudes pre y post terremoto de Coquimbo 2015, XXIII Simposio Chileno de Fisica (Chile, 22-24 November 2022).

156

A. Robledo and A. Robledo, Noneextensive Pesin identity, Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map, Phys. Rev. E 69, 045202(R) (2004).

A. Robledo, Self-organization and a constrained thermal system analogue of the onset of chaos, EPL 123, 40003 (2018), doi: 10.1209/0295-5075/123/40003

O. Bui, Auto-organisation dynamique de systemes a grand nombre de degres de liberte : croissance, complexite et regularite, Doctor Thesis (Aix-Marseille Universite, 2020).

S.M.D. Queiros, On numerical evincement of central limit theorem atypical behavior in the Casati-Prosen triangle map, preprint (2008), 0802.0406 [cond-mat.stat-mech].

G. Ruiz-Lopez and C. Tsallis, q-entropy production in a nontrivial area-preserving length-nonpreserving two-dimensional map, communication at XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics (4-8 December 2006, Mar del Plata, Argentina).

A. Robledo, Critical attractors and q-statistics, Lecture Course at the CBPF School on Nonextensive Statistical Mechanics (Rio de Janeiro, 2-6 April 2007).

E. Mayoral and A. Robledo, Tsallis’ q index and Mori’s q phase transitions at edge of chaos, Phys. Rev. E 72, 026209 (2005).

A. Diaz-Ruelas and A. Robledo, Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos, EPL 105, 40004 (2014) (6 pages), doi: 10.1209/0295-5075/105/40004

...

with different classification techniques, Medical and Biological Engineering and Computing (2023), doi: 10.1007/s11517-023-02843-w

[4847] A. Gulec, Oset fraktallarin yogun madde fiziginde uygulamalari, Doctor Thesis (Ege University, Izmir, Turkey, February 1997).

K.S. Fa, Tsallis distribution and luminescence decays, J. Luminescence 130, 714-716 (2010).

A. Campa, A. Giansanti and D. Moroni, Canonical solution of a system of long-range interacting rotators on a lattice, preprint (2000) [cond-mat/0002168].

[5001] P.R. del Santoro, Aproximacao de campo molecular do modelo de Potts generalizado, Master Thesis (Universidade de Sao Paulo-Brazil, 1994).

D.O. Soares-Pinto, M.S. Reis, R.S. Sarthour and I.S. Oliveira, On the nonextensive character of some magnetic system, preprint (2007), 0709.1628 [cond-mat.stat-mech].

H. Hasegawa, Nonextensive quantum method for itinerant-electron ferromagnetism: The interpolation approximation, 0906.0225 [cond-mat.stat-mech].

[5165] Thermodynamic aspects of entropic cosmology with viscosity

A. Nakamichi, T. Tatekawa and M. Morikawa, Statistical mechanics which describes the universe: SDSS galaxy distribution, N-body simulations, and void probability, preprint (2008).

W. Hurlimann, Benford’s law in scientific research, Internat. J. Scientific and Engineering Res. 6 (7), 143-148 (2015), ISSN 2229-5518

197
[5300] H.R. Pakzad, R. Javadzadeh and D. Nobahar, Head-on collision of dust-ion acoustic solitary waves in a plasma with a nonextensive electron, preprint (2022), doi: 10.21203/rs.3.rs-1447023/v1

[5307] F. Verheest, Comment on “Head-on collision of electron acoustic solitary waves in a plasma with nonextensive hot electrons”, preprint (2012), 1204.1478 [physics.space-ph].

208

[5639] B. Layden, Second-order nonlinear processes in warm unmagnetized plasmas, Doctor Thesis (School of Physics, Faculty of Science, University of Sydney, December 2013).

STAR Collaboration, Observation of D0 meson nuclear modifications in Au+Au collisions at \(\sqrt{s_{NN}} = 200 \text{GeV} \) from the STAR Experiment, preprint (2015), 1504.01317 [hep-ex].

L.L. Li and A.A.K.H. Ismail, Study of bulk properties of strange particles in Au+Au collisions at \(\sqrt{s_{NN}} = 5.4 \text{GeV} \), Entropy 24, 1720 (2022).

STAR Collaboration, \(K^{*0} \) production in Au+Au collisions at \(\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27 \) and 39 GeV from RHIC beam energy scan, Phys. Rev. C 107, 034907 (2023).

Y.F. Geng and B.C. Li, Properties of the particle distribution in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{TeV} \) and \(\sqrt{s_{NN}} = 2.76 \text{TeV} \), Frontiers in Physics 11, 1257937 (2023).

ALICE Collaboration, \(\Phi \)-Meson production at forward rapidity in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{TeV} \) and in pp collisions at \(\sqrt{s} = 2.76 \text{TeV} \), Phys. Lett. B 768, 203-217 (2017), doi: http://dx.doi.org/10.1016/j.physletb.2017.01.074

ALICE Collaboration, Multiplicity dependence of \(\pi, K, \) and \(p \) production in pp collisions at \(\sqrt{s} = 13 \text{TeV} \), Eur. Phys. J. C 80, 693 (2020), doi: 10.1140/epjc/s10052-020-8125-1

ALICE Collaboration, Production of light (anti)nuclei in pp collisions at \(\sqrt{s} = 13 \text{TeV} \), J. High Energy Physics (2022), doi: 10.1007/JHEP01(2022)106

ALICE Collaboration, Measurement of the production of (anti)nuclei in \(p-Pb \) collisions at \(\sqrt{s_{NN}} = 8.16 \text{TeV} \), Phys. Lett. B 846, 137795 (2023).

O. Kovalenko, Neutral meson and direct photon measurements with the ALICE experiment, Ukr. J. Phys. 64 (7), 602 (2019), doi: doi.org/10.15407/ujpe64.7.602

A.J. Larkoski and T. Melia, A large-N expansion for minimum bias, preprint (2021), arxiv 2107.04041

A. Hornung, Messung von \(\pi^0 \)- und \(\eta \)-Mesonen mit dem ALICE-PHOS in p-Pb-Kollisionen bei \(\sqrt{s_{NN}} = 5.02 \text{TeV} \), Master Thesis (Universitat Frankfurt am Main, 2019).

G. Wilk and Z. Wlodarczyk, Beyond the relaxation time approximation, preprint (2021), 2106.11777 [cond-mat.stat-mech].

[5783] ALICE Collaboration, Production of $\Sigma(1385)^\pm$ and $\Sigma(1530)^0$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Eur. Phys. J. C 77, 389 (2017) (17 pages), doi: 10.1140/epjc/s10052-017-4943-1

[5784] ALICE Collaboration, $K^*(892)^0$ and $\Phi(1020)$ meson production at high transverse momentum in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 95, 064606 (2017).

[5789] F.A.W. Hermsen, Go with the flow – Probing the strongest magnetic field in the Universe, Bachelor Thesis (Physics and Astronomy, Utrecht University, 2018).

[5794] M.I. Abdulhamid, Non-linear Waves in Extensive and Non-extensive Quark-Gluon Plasma, INTERNATIONAL REMote Student Training at Joint Institute for Nuclear Research (7 June 2021 to July 2022, Russia).

[6294] L.D. Hanratti, A and K0S production in Pb/Pb and pp collisions with ALICE at the LHC, Doctor Thesis (University of Birmingham, School of Physics and Astronomy, June 2014).

[6363] M. Puccio, Production of (anti-)hyper-nuclei at LHC energies with ALICE, EPJ Web of Conferences 171, 14009 (2018), doi: 10.1051/epjconf/201817114009

[6365] F. Bock, Measurement of direct photons and neutral mesons in small collisions systems with the ALICE experiment at the LHC, Doctor Thesis (Combined Faculties for the Natural Sciences and for Mathematics of Ruperto-Carola University of Heidelberg, Germany, 2017).

[6366] ALICE Collaboration, Production of deuterons, tritons, 3He nuclei and their anti-nuclei in pp collisions at √s = 0.9, 2.76 and 7 TeV, Phys. Rev. C 97, 024615 (2018).

[6370] A. Borissov, Production of Σ0 hyperons at LHC with ALICE, EPJ Web of Conferences 222, 02002 (2019).

P.H. Yoon, Weakly turbulent nonlinear wave-particle interactions in space and astrophysical plasmas, communicated at 18th Annual International Astrophysics Conference (2019); URSI AP-RASC, (New Delhi, India, 09-15 March 2019).

[6535] H. Wang and J. Du, The ion acoustic solitary waves in the four component plasma with the two-temperature electrons following the Cairns-Tsallis distribution, preprint (2021), arxiv 2107.03931

22. N. Gupta and S. Kumar, Gouy phase shift of Q-Gaussian laser beams In collisional plasma with density ramp, European Journal of Molecular and Clinical Medicine 07 (07), 3805-3810 (2020).

[6856] A. Sharma, V. Jhia, M. Roy and B. Kumar, One-dimensional velocity distribution in seepage channel using Tsallis and Shannon entropy, Stochastic Environmental Research and Risk Assessment (2022), in press.

[7033] G.G. Barnafoldi, Tsallis distribution in high-energy heavy ion collisions, communicated at the Conference on Hot and Cold Baryonic Matter (Budapest, 15 to 19 August 2010).
[7049] L.A. Trevisan, A nonextensive statistical model for the nucleon structure function, communicated at the XXXIV Congresso Paulo Leal Ferreira de Fisica (19-21 October 2011, Sao Paulo).

M. Biyajima, T. Mizoguchi and N. Suzuki (ALICE Collaboration), *What is the implication of the observation by CDF Collaboration of the transverse momentum spectrum at $\sqrt{s} = 1.96$ TeV?*, preprint (2016), 1604.01264 [hep-ph].

M. Ghaffar, H.W. Ang and A.H. Chan, From Tsallis scheme of high-energy pp collisions to generalized multiplicity distribution with modified combinants, EPJ Web of Conferences 206, 09008 (2019).

L.N. Gao, F.H. Liu and B.C. Li, Rapidity dependent transverse momentum spectra of heavy quarkonia produced in small collision systems at the LHC, preprint (2019), arxiv 1901.05823

C. Tsallis and Z.G. Arenas, Nonextensive statistical mechanics and high energy physics, EPJ Web of Conferences 71, 00132 (2014) (13 paginas), doi:10.1051/epjconf/20147100132

C.Y. Wong, Relativistic hard scattering and the hadron pT spectrum in high-energy pp collisions, Communication at Oak Ridge National Laboratory (LBNL, March 24, 2015).

M. Tokarev and L. Zborovskiy, Self-similarity of K^0_s-meson production in Au + Au collisions from BES-I at STAR and anomaly of “specific heat” and entropy, Nuclear Physics A (2022), in press.

G. Wilk, High energy collisions from nonextensive perspective, communicated at the X Polish Workshop on Relativistic Heavy-Ion Collisions “Unreasonable effectiveness of statistical approaches to high-energy collisions”, (Kielce, Poland, 13-15 December 2013).

G. Wilk, Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC, communicated at the IX Workshop on Correlation and Femtoscopy (5-8 November 2013, Acireale, Italy).

ALICE Collaboration, Measurement of \(\Lambda(1520) \) production in pp collisions at \(\sqrt{s} = 7 \) TeV and p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, Eur. Phys. J. C 80, 160 (2020).

LHCb Collaboration, Study of the production of \(\Lambda_{b}^{0} \) and \(\bar{B}_{0} \) hadrons in pp collisions and first measurement of the \(\Lambda_{b}^{0} \) \(\rightarrow \) \(J/\psi \) KaK\(^{-} \) branching fraction, Chinese Physics C 40 (1), 011001 (2016) (16 pages).

LHCb collaboration, Forward production of \(Y \) mesons in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV, JHEP 11, 103 (2015) (34 pages).

V. Riabov, Fitting PHENIX identified hadron production spectra to Tsallis function in p + p and d + Au collisions at 200 GeV, communicated at CERN (1 February 2013, Geneva).

F. Sikler, Tsallis fitting of the CMS data, communicated at CERN (1 February 2013, Geneva).

F. Sikler (CMS Collaboration), Identified particles in pp collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV measured with the CMS detector, Nuclear Physics A 926, 128-135 (2014).

V. S. Sandul, V. V. Vechernin and G. A. Feofilov, Influence of the effects of color reconnection and the formation of hadronic jets on the distribution of charged particles over the transverse momentum in pp-collisions at

281

D. Prenga, M. Ifti and S. Kovaci, *Extended views on the study of out-of-equilibrium opinion and opinion-like systems*, The International Physics Conference Tirana 2015, 43-48 (University of Tirana, Faculty of Natural Sciences, Department of Physics, 2015).

S.M.D. Queiros, On a possible dynamical scenario leading to a generalised Gamma distribution, preprint (2004) [physics/0411111].

E. Canessa, Stock market and motion of a variable mass spring, Physica A 388, 2168-2172 (2009).

[7782] A. Al Mutairi, M.E. Ghitany, A. Alothman and R.C. Gupta, Generalised cascades and the Lambert T-function in its applications, hal.archives-ouvertes.fr/hal-01377262 (2016), doi: hal.archives-ouvertes.fr/hal-01377262

[7892] R.A. Treumann and W. Baumjohann, Olbertian partition function in scalar field theory, Front. Phys. 8,
[7894] R.A. Treumann and W. Baumjohann, Olbert’s kappa Fermi and Bose distributions, Frontiers in Physics 9,
672836 (2021).
[math-ph].
[7896] W.S. Chung, Deformation of the classical mechanics by using the q-derivative emerging in the non-extensive
[7899] M.C. Rocca, A. Plastino and G.L. Ferri, Dimensional regularization in non-extensive statistical mechanics,
preprint (2014), 1404.0418 [cond-mat.stat-mech].
[7900] M. Hameeda, B. Pourhassan, M.C. Rocca and A.B. Brzo, Gravitational partition function modified by
[7901] M. Hameeda, B. Pourhassan, M. C. Rocca and A.B. Brzo, Two approaches that prove divergence free nature
[7902] M. Hameeda, B. Pourhassan, M.C.Rocca and M. Faizal, Finite Tsallis gravitational partition function for a
[7903] M. Hameeda, Q. Gani, B. Pourhassan and M.C.Rocca, Boltzmann and Tsallis statistical approaches to study
2020
[7904] M. Rocca, A. Plastino and G. Ferri, Physical peculiarities of divergences emerging in q-deformed statistics,
[7905] A. Plastino and M.C.Rocca, Peculiarities of some classical variational treatments using the maximum entropy
principle, Revista Mexicana de Fisica 64, 603-607 (2018).
[7906] I. Sason, On data-processing and majorization inequalities for f-divergences, International Zurich Seminar on
Information and Communication (IZS), 101-105 (February 26-28, 2020).
[7907] J.P. Boon and J.F. Lutsko, Comment on “Possible divergences in Tsallis’ thermostatistics”, EPL 107, 10003
[7908] A. Plastino and M.C. Rocca, Reply to Comment on “Possible divergences in Tsallis’ thermostatistics” by
Plastino and Rocca, EPL (2014), in press.
(2014), 1402.0088 [cond-mat.stat-mech].
[7910] I.T. Pedron, Integrais, equacoes diferenciais e entropia de Tsallis, Master Thesis (Universidade Estadual de
Maringa - Brazil, 1999).
(2000).
[7912] S. de Picoli Junior, Distribuicao q-exponencial de Tsallis e distribuicao de S.Loudon@elsevier.com: Uma
[7914] S. Picoli Jr., R.S. Mendes and L.C. Malacarne, Statistical properties of the circulation of magazines and
[7916] S. Picoli, R.S. Mendes, L.C. Malacarne and E.K. Lenzi, Scaling behavior in the dynamics of citations to
[7917] U.M.S. Costa, V.N. Freire, L.C. Malacarne, R.S. Mendes, S. Picoli Jr., E.A. de Vasconcelos and E.F. da Silva
Jr., An improved description of the dielectric breakdown in oxides based on a generalized Weibull distribution,

301



[7990] H. Suyari, Multiplicative duality, q-triplet and (µ, ν, q)-relation derived from the one-to-one correspondence between the (µ, ν)-multinominal coefficient and Tsallis entropy S_q, Physica A 387, 71-83 (2007).

[8053] B. Avinab, Generalization of optoelectronic parameters with the configurational entropy of certain photon confining structures by the regulation of Tsallis factor using q-exponential integrals, accepted for communication at the European Conference on Lasers, Optics and Photonics (2018).

J.P. Dal Molin, *O papel do codigo estereoquimico e das flutuacoes termicas locais no processo de folding de proteinas*, Doctor Thesis (University of Sao Paulo, Ribeirao Preto, 2011).

[8308] E. Farkash, Structural prediction of flexible molecular interactions, Doctor Thesis (Tel Aviv University, 2012).

S.A. Shaikh and H. Kitagawa, *Continuous outlier detection on uncertain data streams*, preprint (Tsukuba University, 2014).

Ping Li, A very efficient scheme for estimating entropy of data streams using compressed counting, preprint (2008), 0808.1771 [cs.DS].

H. Shimodaira, Automatic color image segmentation using a square elemental region-based seeded region growing and merging method, preprint (2017), arxiv 1711.09352

K. Hua and D.A. Simovici, Dual criteria determination of the number of clusters in data, IEEE SYNASC (2018).

B.S. Rocha, F.A. Mendonca and R.V. Ramos, An algorithm to decrease the key distribution error rate using pulsars, communicated at the 7th Workshop on Communication Networks and Power Systems (WCNPS 2022).

[8517] B.M. Dolgonosov, On the knowledge production function, preprint (2023), arxiv 2312.01147

[8520] O.V. Morzhin and A.N. Pechen, Generation of C-NOT, SWAP, and C-Z gates for two qubits using coherent and incoherent controls and stochastic optimization, preprint (2023), 2312.05625 [quant-ph].

[8528] F. Montani, Neural population activity: finding simplicity in complexity, communicated at Medyfinol 2014 (Maceio, Brazil, 13 to 16 October 2004).

[8540] L.R. da Silva, Redes independente de escala e mecanica estatistica nao extensiva, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

[8595] A.V. Kolesnichenko, Modification in the framework of nonextensive Tsallis statistics of the gravitational instability criterions of astrophysical rotating disks with fractal structure (2014) [in Russian]

[8597] A.V. Kolesnichenko, Jeans instability of the protoplanetary circumstellar disk taking into account the magnetic field and radiation in the nonextensive Tsallis kinetics, (2021) [In Russian], doi: 10.20948/prepr-2021-4

[8598] A.V. Kolesnichenko and M.Y. Marov, The scenario of the accelerated expansion of the Universe under the influence of entropic forces associated with the entropies of Tsallis-Cirto and Barrow, (2020, doi: 10.20948/prepr-2020-105 [In Russian].

[8599] A.V. Kolesnichenko and M.Y. Marov, Modeling the dynamic evolution of the Universe under the influence of the entropic force associated with modified Sharma Mittal entropy, 68, 35 (2021), doi: 10.20948/prepr-2021-68

References

Swarm - ESA, *Results of the first part of INTENS project*, ESA/Contract No.4000125663/18/I-NB (2021)

[8732] H. Rabal, L. Zunino, O. Rosso and N. Cap, Q-statistics and disequilibrium in dynamic speckle measures, communicated at Medyfinol 2014 (Maceio, Brazil, 13 to 16 October 2004).

336
A.C. Sparavigna, Composition operations of generalized entropies applied to the study of numbers, Internat. J. Sciences. 8 (10), 1-5 (2019).
A.C. Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other numbers and their representations by means of integer sequences, Zenodo.10.5281/zenodo.3471358
A.C. Sparavigna, Entropies and fractal dimensions, Philica.com, 559 (2016).
A.C. Sparavigna, Composition operations of generalized entropies applied to the study of numbers, Internat. J. Sciences. 8 (10), 1-5 (2019).
A.C. Sparavigna, Generalizing asymmetric and pseudo-Voigt functions by means of q-Gaussian Tsallis functions to analyze the wings of Raman spectral bands, preprint (2023).

J. Pan, Z. Ma, Y. Pang and Y. Yuan, Robust probabilistic tensor analysis for time-variant collaborative filtering, Neurocomputing 119, 139-143 (2013), http://dx.doi.org/10.1016/j.neucom.2012.03.035

P. Li, Estimating entropy of data streams using compressed counting, preprint (2009), 0910.1495 [cs.DS].

M. Shen, Q. Zhang and P.J. Beadle, Nonextensive entropy analysis of non-stationary ERP signals, IEEE International Conference on Neural Networks and Signal Processing (Nanjing, China, 14-17 December 2003), pages 806-809.

L. Montangie and F. Montani, Quantifying higher-order correlations in a neuronal pool, Physica A 421, 388-400 (2015), doi: http://dx.doi.org/10.1016/j.physa.2014.11.046

L. Montangie, Modelos minimales y teoria de la informacion de poblaciones neuronales, Doctor Thesis (Universidad de La Plata, Argentina, 2017).

A. Ben Hamza, Nonextensive information-theoretic measure for image edge detection, J. Electronic Imaging 15, 013011 (2006).

B. Kowalik and M. Szpyrka, Architecture of on-line data acquisition system for car on-board diagnostics, MATEC Web of Conferences 252, 02003 (2019), doi: 10.1051/matecconf/201925202003

I. Fukuda and H. Nakamura, FUJITSU LTD (FUIT); DOKURITSU GYOSEI HOJIN SANGYO GIJUTSU

D.J. Hemanth, V. Rajinikanth, V.S. Rao, S. Mishra, N.M.S. Hannon, R. Vijayarajan and S. Arunmozhi,

S. Liao, J. Sun, Y. Chen, Y. Wang and P. Zhang,

M.A. El-Sayed,

M.A. El-Sayed, S. Abdel-Khalek and E. Abdel-Aziz,

Y.L. Li, S.L. Yu and G. Zheng,

H. Joo, J. Park, Y. Choi, C.H. Lim and H.J. Yang,

K.P. Nelson, B.J. Scannell and H. Landau,

M. Ghaderpanah, A. Abbas and A. Ben Hamza,

C.Y. Li, A. Ben Hamza, N. Bouguila, X.H. Wang, F.H. Ming and G.H. Xiao,

S. Liao, J. Sun, Y. Chen, Y. Wang and P. Zhang,

M. Sacanamboy,

A. Sholehkerdar, J. Tavakoli and Z. Liu,

M. Ghaderpanah, A. Abbas and A. Ben Hamza,

R.S. Sneddon, SNEDDON AND ASSOC INC (SNED-Non-standard), Data value measuring method for electro encephalography data, involves computing attribute for each data subset so that attribute is dependent on data in each subset and attribute is equal to variability of data in each data subset, Patent US2005159919-A1 (2005-54095).

[8974] M.M. DiStasio and C.T. Bock, Data packet collection and monitoring computer system for e.g. security system functions, has wireless access point and data collection platform provided to calculate entropy of determined estimate of received signal strength, Assignee: Syracuse Res. Corp., US2010226255-A1 (2010).
[8977] X. Bai, J. Chen and H. Li, Local corrosion detecting method for horizontal well sleeve in oil field, involves outputting sleeve local corrosion information in neuron network according to calculating result of input Tsallis wavelet energy entropy, Assignee: Harbin Inst Technology, CN101650327-A (2010).
[8983] X. Li and Q. Xu, Monte Carlo illumination self-adaptive method for image processing field, involves sampling voltage of pixel when value is larger than threshold value, and utilizing sampling points to increase another
threshold value according to rule, Patent Number(s): CN102289842-A, Patent Assignee Name(s) and Code(s): UNIV TIANJIN(UTIJ-C)

[8986] Y. Liu, C. Xiao, M. Liu, P. Yi, D. Huang, M. Gong, L. Wang, H. Li, D. Liu, H. Xu, G. Qi, D. Zhang, C. Shan et al, Method for evaluating railway system contact based on Tsallis entropy by using electronic device, involves calculating corresponding Tsallis entropy value as state characteristic of contact, and evaluating state of contact system according to change of Tsallis entropy value, China Railway Fourth Survey and Design Ins (CRCC-C), Derwent: 2022-D10561

[8987] X. Li, H. Geng and X. Bai, Method for aligning inverse synthetic aperture radar global envelope based on Tsallis entropy minimization useful in radar signal processing comprises calculating average distance image of current distance to be aligned to pulse pressure echo, calculating average distance image of Tsallis entropy, CN114488149-A, Univ Xidian, Derwent: 2020-C91801

[8988] Y. Li, L. Yao, X. Mu, C. Li, X. Luo and M. Zhu, Secondary image segmentation method based on Otsu and Tsallis entropy, involves obtaining two-dimensional histogram of divided image, and calculating entropy of divided image, and obtaining the final re-divided image, Univ. Xian Polytechnic (UYXP-C), Derwent: 2020-70890C

[8989] L. Li, Two-dimensional Tsallis gray entropy fast iteration based threshold value dividing method, involves dividing target and background in gray image by using optimal threshold value vector as dividing threshold of gray image, CN111553926-ACN111553926-B, China Aviation Radios Electronics Res, Derwent: 2020-825675

V. Kumar, Some results on Tsallis entropy measure and k-record values, Physica A 462, 667-673 (2016).

O. Bingol, S. Pacaci and U. Guvenc, *Image segmentation with SFS algorithm and entropy methods* [In Turkish], International Conferences on Science and Technology - Engineering Science and Technology - ICONST EST (2019).

J.-F. Bercher, *Entropies et criteres entropiques*, preprint (2014), hal.archives-ouvertes.fr/hal-01087503

Is there a “true” diversity?

W. Liu, Q. Ma and X. Liu, Research on the dynamic evolution and its influencing factors of stock correlation network in the Chinese new energy market, Finance Research Letters (2021), in press.

M. Zanin and F. Olivares, Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series, Communications Physics 4, 190 (2021), doi: 10.1038/s42005-021-00696-z.

D. Tian, Pricing principle via Tsallis relative entropy in incomplete market, preprint (2022), 2201.05316 [q-fin.MF].

S. Monna, C. Montuori, F. Frugoni, C. Piromallo, L. Vinnik and AlpArray Working Group, Moho and LAB across the Western Alps (Europe) from P and S receiver function analysis, JGR Solid Earth 127 (10) (2022).

Beyond the Zipf-Mandelbrot law in quantitative linguistics

Do not hallucinate.

Canadian Workshop on Information theory (18-21 May 2003, Waterloo, Ontario, Canada).

T.G. Dedovich and M.V. Tokarev, Criteria of fractal reconstruction and suppressing background events with the ScPaC method, Physics of Particles and Nuclei Letters 18, 93-106 (2021).

D. Campos and M.R. Campos, Underlying thermodynamic relations of a species diversity index: Freshwater crabs from Colombia, Ecological Indicators 15, 198-207 (2012).

H. Zhang, W. Xu, Q. Guo, P. Han and Y. Qiao, First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise, Chaos, Solitons and Fractals 135, 109767 (2020).

...

T. Bountis, K. Kaloudis and H. Christodoulidi, Dynamics and statistics of weak chaos in a 4-D symplectic map, preprint (2023), [nlin.CD].

H. Christodoulidi, Energy localisation and dynamics of a mean-field model with non-linear dispersion, communicated at Sigma-Phi (Chania, 2023).

A. Bountis, The effect of long range interactions on the dynamics and statistics of 1D Hamiltonian lattices, communication (2019).

A. Carati, L. Galgani, F. Gangemi and R. Gangemi, Tsallis distributions, their relaxations and the relation $\Delta t \Delta E \simeq h$, in the dynamical fluctuations of a classical model of a crystal, preprint (2020), 2008.00712 [cond-mat.stat-mech].

G.A. Casas, F.D. Nobre and E.M.F. Curado, New type of equilibrium distribution for a system of charges In a spherically-symmetric electric field, EPL 126, 10005 (2019).

S. Davis, A classification of nonequilibrium steady states based on temperature correlations, preprint (2022), 2206.12932 [cond-mat.stat-mech].

S. Davis, Temperatura y sus fluctuaciones en estados estacionarios fuera del equilibrio, XXIII Simposio Chileno de Física (Chile, 22-24 November 2022).

C. Farias and S. Davis, A sufficient condition for superstatistics in steady state ensembles, preprint (2023), 2312.04283 [cond-mat.stat-mech].

D. Bagchi and C. Tsallis, Universal sensitivity to the initial conditions of a d-dimensional Fermi-Pasta-Ulam model including long-range interactions, communicated at the International School of Complexity (2015, Erice).

J. Naudts, Thermodynamics from the perspective of information geometry, comm. at 12th Joint European Thermodynamics Conference (Brescia, July 1-5, 2013).

[9910] A.N. Loukidis, Determination of criticality in brittle materials by statistical physics methods, utilizing acoustic emission data, Doctor Thesis (in Greek) (University of West Attica, School of Engineering, Department of Electrical and Electronics Engineering, 2022).

V. Sychev, L. Bogomolov and D. Kulkov, *Analysis of energy characteristics of acoustic emission signals during uniaxial compression of geomaterial samples*, STRPEP 2020, E3S Web of Conferences 196, 02004 (2020), doi: 10.1051/e3sconf/202019602004

