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Power law statistics and stellar rotational velocities in the Pleiades
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Abstract – In this paper we will show that, the non-Gaussian statistics framework based on the
Kaniadakis statistics is more appropriate to fit the observed distributions of projected rotational
velocity measurements of stars in the Pleiades open cluster. To this end, we compare the results
from the κ and q-distributions with the Maxwellian.
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Introduction. – Some restrictions to the applicability
of the statistical mechanics have motivated the investiga-
tion of the power law or non-Gaussian statistics, both from
theoretical and experimental viewpoints. In this concern,
the nonextensive statistical mechanics [1] and extensive
generalized power law statistics [2] are the most inves-
tigated frameworks. In the latter one, recent efforts on
the kinetic foundations of the κ-statistics leads to a power
law distribution function and the κ-entropy which emerges
in the context of special relativity and in the so-called
kinetic interaction principle (see ref. [2]). Formally, the
κ-framework is based on κ-exponential and κ-logarithm
functions, which are defined by

expκ(f) = (
√
1+κ2f2+κf)1/κ, (1)

lnκ(f) =
fκ− f−κ
2κ

, (2)

whereas the κ-entropy associated with the κ-statistics is
given by [2]

Sκ =−
∫
d3pf lnκ f =−〈lnκ(f)〉. (3)

The expressions above reduces to the standard results in
the limit κ= 0.
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The Tsallis statistics has been investigated in a wide
range of problems in physics1. In the astrophysical domain,
the first applications of this power law statistics studied
stellar polytropes [3] and the peculiar velocity function
of galaxy clusters [4]. More recently, Kaniadakis statistics
has also been studied in the theoretical and experimental
context [5], however the first application with a possiple
connection with astrophysical system has been the simu-
lation in relativistic plasmas. In this regard, the power law
energy distribution provides a strong argument in favour
of the Kaniadakis statistics [6]. Therefore, in such systems
where nonextensivity holds, the classical statistics may
be generalized. In this sense, one of the most puzzling
questions in stellar astrophysics in the past 50 years is
that concerning the nature of the statistical law control-
ling the distribution of stellar rotational velocity, in spite
of the large acceptance that stellar rotation axes have a
random orientation [7]. In the middle of the past century,
Chandrasekhar and Munch [8] were the first to derive
analytically the distribution of stellar projected rotational
velocity, on the basis of a Gaussian distribution. In their
approach, these authors first assumed a parametric form
for a function f(v), where v is the true rotational veloc-
ity, then computed the corresponding distribution of the
projected rotational velocity V sin i and finally adjusted a
set of stellar parameters to reproduce the V sin i measure-
ments. Two decades later, Deutsch [9] claimed that the
distribution of stellar rotational velocities should have

1For a complete and updated list of refences see http://tsallis.
cat.cbpf.br/biblio.htm.
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the form of a Maxwellian-Boltzmann law. Nevertheless, a
number of studies have shown a clear discrepancy between
theory and observations, where observed distributions are
not fitted by a Gaussian or Maxwellian function with a
good level of significance. A Gaussian or Maxwellian distri-
bution that fits the fast rotators fails to account for low
rotation rates. On the other hand, a fit to slow rotators
fails to explain the rapidly rotating stars [10,11].
Rotation is one of the most important observable in

stellar astrophysics, driving strongly the evolution of stars,
providing also valuable information on stellar magnetism,
mixing of chemical abundances in the stellar interior,
tidal interaction in close binaries, and engulfing of brown
dwarfs and planets. In addition, if the present value of
the rotational velocity of stars at a given evolutionary
stage reflects the original angular momentum with which
they were formed, the behaviour of the distribution of
rotational velocity may also be used to study some of the
characteristics of the physical processes controlling star
formation. Early studies on the nature of the statistics
controlling the distribution of stellar rotational velocity
were based on V sin i measurements with poor precision,
which, admittedly, can lead to systematic errors on the
final analyses for low V sin i values. Here, we show that
the question of the nature of the distribution of stellar
rotational velocity, at least for low-mass stars in the
Pleiades open cluster, is not simply a question of which
mathematical function model is used, but it depends
primarily on the statistical mechanics applied, which
should be general enough to take into account the changes
in rotation with time.
In this work we have investigated the effects of the power

law statistics on the observed distribution of projected
rotational velocity measurements of stars in the Pleiades
open cluster by considering a κ-distribution functions. In
this regard, it is worthy of emphasis that earlier study
based on the Tsallis statistics has been developed in
ref. [12]. However, in the present work, to study the effects
of the powerlaw statistics on the observed distribution
in the Pleiades open cluster we use the more recent
generalization of Kaniadakis [2] and, for completeness,
we compare the results with the ones obtained in the
context of the Tsallis statistics. This paper is organized as
follows. In the second section, based on the basic formalism
presented in ref. [9], we present a generalization of the
rotational velocity distribution in the spirit of Kaniadakis
statistics. A brief discussion on the stellar sample is made
in the third section. Our main results are discussed in the
fourth section and we summarize the main conclusions in
the last section.

κ-distribution function. – As is well know, a
large portion of the experimental evidence, as well as
some theoretical considerations supporting Tsallis and
Kaniadakis proposal involves a non-Maxwellian (power
law) distribution function associated with the thermo-
statistical description from the variety of the physical

systems [5,13]. In Tsallis framework, the equilibrium
velocity q-distribution may be derived from at least three
different methods, namely: i) through a simple non-
extensive generalization of the Maxwell ansatz, which is
based on the isotropy of the velocity space [14]; ii) within
the nonextensive canonical ensemble, that is, maximizing
Tsallis entropy under the constraints imposed by normal-
ization and the energy mean value [15] and iii) using
a more rigorous treatment based on the nonextensive
formulation of the Boltzmann H-theorem [16]. Here, we
revisit the first method by considering the Kaniadakis
statistical which is based on expκ and lnκ given by eq. (1),
where f is a function of random variables that includes
the standard exponential as the limiting case when κ→ 0.
It is widely known that Deutsch [9] has considered the

distribution function for the magnitude of a vector that
has random orientation. For this, it is required to find the
distribution function of a positive scalar ω, which is the
magnitude of a vector �ω. We assume that the distribution
of �ω is isotropic. We also assume that if it is decomposed
into components along Cartesian axes, the distribution of
any component is independent of the other components.
Deutsch has defined Ω as the non-dimensional quantity
ωj, where j is a parameter with the dimension ω−1, so

�Ω=Ωx�i+Ωy�j+Ωz�k. (4)

The probability that Ωx lies in the interval [Ωx; Ωx+dΩx],
Ωy in [Ωy; Ωy +dΩy] and Ωz in [Ωz; Ωz +dΩz] is then

F (Ω)d3Ω= f(Ωx)f(Ωy)f(Ωz)dΩxdΩydΩz, (5)

where Ω=
√
Ω2x+Ω

2
y +Ω

2
z and F (Ω) is the standard

Maxwellian distribution function

F (Ω) =
4√
π
Ω2 exp (−Ω2). (6)

Let us now consider the arguments given in refs. [12,14].
One can modify the basic hypothesis of statistical inde-
pendence between the distributions associated with the
components of �Ω, based on the κ-statistics. As pointed out
in [14] and [12], the independence between the three veloc-
ity components does not hold in systems with long-range
interaction, or statiscally correlated, where the power law
statistics character is observed. Taking such arguments
into account, the generalization for eq. (6) in the light
from Kaniadakis the framework reads,

F (Ω)d3Ω = expκ(lnκ f(Ωx)+ lnκ f(Ωy)

+ lnκ f(Ωz))dΩxdΩydΩz, (7)

where the κ-exponential and κ-logarithm are given by
identities (1) and (2). In particular, in the limit κ= 0
the standard expression (5) is recovered. Note also that

lnκ(expκ(f)) = expκ(lnκ(f)) = f , and
d lnκ f
dx = f

κ+f−κ
2f

df
dx

are satisfied. Therefore, the partial differentiation of the
κ-ln of (7) with respect to Ωi leads to

∂ lnκ F

∂Ωi
=
∂

∂Ωi
(lnκ f(Ωx)+ lnκ f(Ωy)+ lnκ f(Ωz)), (8)
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or, equivalently,

Fκ+F−κ

2F

1

χ

dF

dχ
=
1

Ωi

d

dΩi
lnκ fi, (9)

where χ=
√
Ω2x+Ω

2
y +Ω

2
z. Now, by defining

φ(χ) =
Fκ+F−κ

2F

1

χ

dF

dχ
, (10)

we may rewrite (9) as

φ(χ) =
1

Ωi

d

dΩi
lnκ fi. (11)

The second member of the above equation depends only
on Ωi, with i= x, y, z. Hence, eq. (11) can be satisfied only
if all its members are equal to one and the same constant,
not depending on any of the velocity components. Thus,
we can make φ(χ) =−2/σ2κ, where the parameter σκ is the
width of the κ-distribution, leading to

1

Ωi

∂

∂Ωi
(lnκ fi) =− 2

σ2κ
. (12)

Hence, the solutions of eq. (12) for f(Ωi) is given by the
κ-distribution

f(Ωi) = expκ(−Ω2i /σ2κ). (13)

From (13) we see that the Gaussian probability curve
is replaced by the characteristic power law behavior
of Kaniadakis framework and, as expected, the limit
κ= 0 recovers the exponential result. Note also that for
any values of the κ-parameter, the power law (13) does
not exhibits a cut-off in the maximal allowed rotational
velocities, and it is straightforward to show that F (Ω) is
given by

F (Ω) = expκ(−Ω2/σ2κ). (14)

The probability of finding ω in the interval [Ω,Ω+dΩ] is
determined by Ψ(Ω) =

∫
f(Ω)d3Ω which leads to a power

law that belongs to the same class of power law as given
in eq. (13), i.e.,

Ψ(Ω) = 4πΩ2 expκ(−Ω2/σ2κ). (15)

Here, it is worth mentioning that the standard distrib-
ution of the true rotational velocity V for a star sample
is F (V )∼ V 2exp(−V 2). As shown by Deutsch [9], the
standard observed distribution of the projected rotational
velocity V sin i, for a random orientation of axes, must
be given by φ(y)∼ y exp (−y2) [17], with y= V sin i.
Henceforth, the κ-distribution φκ(y) should reproduce
the standard one, in the same way as Fκ(v) recovers
F (V ) in the κ= 0 limiting case. Therefore, by considering
this arguments, we introduce the following distribution
function for the observed stellar rotational velocities

φκ(y) = y expκ(−y2/σ2κ). (16)

The stellar sample. – The rotational velocities V sin i
used in the present analysis were taken from the rota-
tional survey for the Pleiades stars carried out by Queloz
et al. [18]. We have selected 219 stars from the original
sample given by those authors. All the selected objects are
low-mass stars and provide a complete and unbiased rota-
tion data set for stars in the B–V range (0.4–1.4) corre-
sponding to an effective temperature range from 4000K
to 6000K and a mass range from 0.6M� to 1.2M�. For
a complete discussion on the observational procedure,
calibration and error analysis the reader is referred to
Queloz et al. [18]. We should observe that individual errors
in V sin i measurements are better than about 1 km/s
and should not play a significant role on the observed
distributions.
If we plot the observed distribution we note that there

are two stars with velocity (105 km/s and 160 km/s) too
far from the peak of the distribution (5–8 km/s). We have,
therefore, excluded these stars with exceedingly high value
of V sin i from the sample.
In order to avoid biases due to arbitrary choices of bin

range when constructing the frequency histograms, we
have decided to study the observed cumulative distri-
bution of the rotational velocities, V sin i, and compare
it with the integral of the probability distribution
function in (16). The normalized cumulative distribution is
given by

∑
κ

(y) =

∫ y
0

y expκ(−y2/σ2κ)dy∫ ∞
0

y expκ(−y2/σ2κ)dy
. (17)

Results. – Parallel with the Kaniadakis distribution
we have also fitted the data to the Tsallis distribu-
tion in order to evaluate which one would best fit the
observations. The Tsallis generalized maxwellian is a two
parameter (q and σq) function given by

φq(y) = y

[
1− (1− q) y

2

σ2q

]1/(1−q)
. (18)

In the limit q= 1 the standard Maxwellian is recovered.
To calculate the best values of the distributions para-

meters for the observed cumulative distribution we used
the Kolmogorov-Smirnov statistical test.
The distribution functions were used to fit the obser-

vational data, to obtain the best φκ(y) and φq(y), giving
the best κ and q-value together with the best σκ and σq
for the corresponding distribution. The results are shown
in table 1. We can clearly see that the V sin i distribution
of the Pleiades stars do not obey a standard Maxwellian
function, since the values of κ and q are significantly differ-
ent from 0 and 1, respectively.
Figure 1 shows the best fits for the histogram of the

observed distribution of V sin i according the results in
table 1. The κ and q Maxwellian functions are represented,
respectively by the thick (κ= 0.45) and thin (q= 1.33)
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Table 1: Best values of the parameters of Kaniadakis (κ and σκ) and Tsallis (q and σq) distribution determined using
Kolmogorov–Smirnov test for the rotational velocity of stars in the Pleiades cluster.

∆(B−V ) N κ σκ Pmax q σq Pmax

0.40–1.40 217 0.446+0.048−0.073 7.81 0.28 1.334+0.038−0.055 6.93 0.23
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0.14

V sin i (km/s)

Fig. 1: Observed distribution (histogram) of the rotational
velocity of the stars in the Pleiades open cluster. The curves
represent the best fitted Maxwellian (dashed line), Tsallis (thin
line) and Kaniadakis (thick line) distribution, respectively. The
fitting parameters are in table 1.

lines. The dashed line represents standard Maxwellian
function. The distribution of observed V sin i is without
a doubt more adequately fitted by either the κ or the
q Maxwellian function. This is more noticeable in fig. 2
where we have plotted the logarithm of the distribution
divided by V sin i, that is log (φ(y)/y), as a function of
(V sin i)2 so that the standard Maxwellian is represented
by a straight (dashed) line. The Kaniadakis distribu-
tion is represented by the thick line while Tsallis distri-
bution by the thin line. We observe that none of the
distribution fit well the high velocity end of the observed
data. Although the Kaniadakis function fits the data
slightly better than Tsallis function, the difference may
be regarded as marginal as indicated by the values of the
maximum probability of the Kolmogorov-Smirnov statis-
tical test (table 1).

0 500 1000 1500 2000
-5

-4

-3

-2

-1

(V sin i)2 (km/s)2

Fig. 2: As in fig. 1 but for the logarithm of the distribution
function divided by V sin i as a function of (V sin i)2.

Finally, in fig. 3 we present the behaviour the parame-
ter σ, representing the width of the two non-Maxwellian,
as a function of the parameters κ and q. It is clear
that, at least for the present stellar sample, the stan-
dard Maxwellian (κ= 0 or q= 1) is in the rejection region,
i.e., outside the curve which delineates 0.05 significance
level.

Conclusions. – In this work we have used non-
Gaussian statistics to investigate the observed distribution
of projected rotational velocity of stars in the Pleiades
open cluster. We have studied in details the Kaniadakis
distribution and shown that it fits more closely the
observed distribution than the standard Maxwellian.
A comparison with the Tsallis statistics shows that, at
least when the observed distribution presents an extended
tail, as it is the case of rotational velocity of stars in the

59001-p4



Power law statistics and stellar rotational velocities in the Pleiades

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

κ

0.50

0.60

0.70

0.80

0.90

σ

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

q

0.40

0.50

0.60

0.70

0.80

0.90

σ

Fig. 3: Rejection region (outside curves) of the null hypothesis
that the V sin i distribution is drawn from the κ-distribution
(upper panel) at 0.05 and 0.15 confidence level and from
q-distribution (lower panel) at 0.05 and 0.10 confidence level.
The dot (•) represents the maximum probability for the pairs
(κ−σκ) and (q−σq).

Pleiades, both distributions give equivalent, though not
entirely satisfactory results.
As discussed in the previous section, the best fits for

the histogram of observed distribution are non-Gaussian
with κ= 0.45 and q= 1.33 for Kaniadakis and Tsallis
parameter, respectively. In particular, we emphasize that
the result of the q-parameter is consistent with the
upper limit q < 2 obtained from several independents
investigations in the quantum limit [19] and in the non-
quantum limit [20].
Finally, it is worth mentioning that the best fits in
κ and q can be recalculated by considering a more
robust stellar sample. In this respect, the stellar radial
velocity of a sample of open clusters are being stud-
ied. This issue will be addressed in a forthcoming
communication.
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