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• Detailed molecular dynamics study for the HMF and the ↵-XY models is presented.
• Both short- and long-range regimes are analyzed and different behaviors are shown.
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• In the long-range case the results points to nonextensive statistical mechanics.
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a b s t r a c t

We numerically study a one-dimensional system of N classical localized planar rotators
coupled through interactions which decay with distance as 1/r↵ (↵ � 0). The approach
is a first principle one (i.e., based on Newton’s law), and yields the probability distribu-
tion of momenta. For ↵ large enough and N � 1 we observe, for longstanding states,
the Maxwellian distribution, landmark of Boltzmann–Gibbs thermostatistics. But, for ↵
small or comparable to unity, we observe instead robust fat-tailed distributions that are
quite well fitted with q-Gaussians. These distributions extremize, under appropriate sim-
ple constraints, the nonadditive entropy Sq uponwhich nonextensive statistical mechanics
is based. The whole scenario appears to be consistent with nonergodicity andwith the the-
sis of the q-generalized Central Limit Theorem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

More than one century ago, in his historical book Elementary Principles in Statistical Mechanics [1], J. W. Gibbs remarked
that systems involving interactions such as Newtonian gravitation are intractable within the theory proposed by Boltzmann
and himself, due to the divergence of the canonical partition function. This is of course the reason why no standard
temperature-dependent thermostatistical quantities (e.g., a specific heat at finite temperatures) can possibly be calculated
for the free hydrogen atom, for example. Indeed, although the quantumapproachof the hydrogen atomsolves the divergence
associated, for classical gravitation, with small distances, the divergence associated with large distances remains the same.
More precisely, unless a box surrounds the atom, an infinite number of excited energy levels accumulate at the ionization
value, which yields a divergent canonical partition function at any finite temperature. This and related questions are
commented on in Ref. [2], for instance.
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Here we report a numerical study of the ↵-XY model [3], a many-body Hamiltonian system with two-body interactions
whose range is controlled by a parameter of the model. More precisely, we assume a potential which decays with distance
as 1/r↵ (↵ � 0). This model recovers, when ↵ = 0, the Mean Field Hamiltonian (HMF), a fully coupled many-particle
system [4], and recovers, in the ↵ ! 1 limit, the first-neighbor XY ferromagnet, a model which is well defined within the
traditional thermostatistical scenario of short-range interactions. Systemswith long-range interactions have been attracting
particular attention of the statistical-mechanical community in the last two decades. This renewed and increasing interest
was launched by Antoni and Ruffo in 1995 [4] with their discussion of the HMF model, which in many aspects mimics
traditional long-range systems while bypassing some of its difficulties.

The model focused on here was introduced some years later in Ref. [3]. It is a direct generalization of the HMF by in-
cluding a power-law dependence on distance in order to control the range of the interactions.1 We refer to short-range
(long-range) interactions when the potential felt by one rotator of a d-dimensional system is integrable (nonintegrable),
i.e., when ↵/d > 1 (0  ↵/d  1). A direct consequence of this fact is that the total energy is extensive when ↵/d > 1,
whereas it is superextensive if 0  ↵/d  1. As we shall numerically illustrate, for large values of ↵/d the system exhibits
the standard behavior expected within Boltzmann–Gibbs (BG) statistical mechanics. However, we shall also exhibit that
when long-range interactions become dominant, i.e., when ↵/d < 1, the situation is much more complex. In 1988 a gener-
alization of the BG statistical mechanics based on a different entropic functional [2,6,7] was proposed.Within this approach,
the thermodynamical structure (free energy, temperature, etc.) can be extended [2,8–11]. Some of the numerical results
presented in the next sections appear to be in close agreement with this theory.

2. The model

To transparently extract the deep consequences of Gibbs’ remark, in the present paper we focus on the influence of the
range of the interactions within an illustrative isolated classical system, namely the ↵-XY model [3]. This model consists of
a d-dimensional hypercubic lattice of N interacting planar rotators, whose Hamiltonian is given by

H = 1
2

NX

i=1

p2i + 1
2

NX

i=1

NX

j=1
j6=i

1 � cos(✓i � ✓j)

r↵
ij

(↵ � 0), (1)

with periodic boundary conditions. Each rotator is characterized by the angle ✓i 2 [0, 2⇡) and its canonical conjugate
momentum pi. Without loss of generality we have considered unit moment of inertia, and unit first-neighbor coupling
constant; rij measures the (dimensionless) distance between rotators i and j, defined as the minimal one given the periodic
boundary conditions.

For d = 1, rij takes the values 1, 2, 3 . . .; for d = 2, it takes the values 1,
p
2, 2, . . .; for d = 3, it takes the values

1,
p
2,

p
3, 2, . . . . Notice that, in contrast with Newtonian gravitation, the potential in Hamiltonian (1) does not diverge

at short distances since the minimal distance, in any dimension, is always the unit. The kinetic term in (1), proportional to
p2i , is the traditional one, but the interaction term is long-range for ↵  d, which makes the internal energy per particle to
diverge in the thermodynamic limit. Following [12], this property can be seen by realizing that the energy per particle of the
interaction term varies with N like [13,14]:

eN ⌘ 1
N

NX
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NX
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ij
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NX

j=2

1
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1j

. (2)

In the ↵ ! 1 limit, eN = 2d. If ↵/d < 1, the discussion of the above sum can be conveniently replaced by the discussion
of the following integral [3]:

d
Z N1/d

1
dr

rd�1

r�↵
= N1�↵/d � 1

1 � ↵/d
, (3)

which behaves, whenN ! 1, likeN1�↵/d/(1�↵/d) if 0  ↵/d < 1, like lnN if↵/d = 1, and like 1/(↵/d�1) if↵/d > 1. In
otherwords, the total internal energy is extensive (in the thermodynamical sense) for↵/d > 1, and nonextensive otherwise.
In order to accommodate to a common practice, we can rewrite the Hamiltonian H as follows [3]:

H̄ = 1
2

NX

i=1

p2i + 1
2eN

NX

i=1

NX

j=1
j6=i

1 � cos(✓i � ✓j)

r↵
ij

= K + V , (4)

which can now be considered as ‘‘extensive’’ for all values of ↵/d, at the ‘‘price’’ that a microscopic two-body coupling
constant becomes now, through eN , artificially dependent on N . However, as shown in Ref. [3], this corresponds in fact

1 We refer the reader to the work by Chavanis and Campa [5], where a quite complete list of references about the evolution of this subject can be found.
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to a rescaling of time (hence of pi).2 More precisely, this rewriting takes into account the fact that, for all values of ↵/d,
the thermodynamic energies (internal, Helmholtz, Gibbs) grow like NeN , the entropy, volume, magnetization M , number of
particles, etc., grow likeN (i.e., remain extensive for both regions above andbelow↵/d = 1), and the temperature T , pressure,
external magnetic field, chemical potential, etc., must be scaled with eN in order to have finite equations of states [2]. The
correctness of this (conjectural) scaling was numerically shown in Ref. [13] for the present specific d = 1 system, and
has been profusely verified in the literature for several other systems, e.g., in ferrofluid [12], fluid [15], magnetic [16–18],
diffusive [19], percolation [20,21] systems, among others (see Ref. [2] for an overview). Also, it was analytically proven [14]
(see also [22]), for any d and 0 < ↵ < d, that rewriting (4) associates to the↵-XYmodel the same behavior as that, previously
known, of the↵ = 0 [4] case. This universality is clearly exhibited by plotting T/eN andM versus hHi /NeN for different values
of ↵ and N as in Ref. [13], or, equivalently, T and M versus

⌦
H̄

↵
/N as in Refs. [14,23].

2.1. The cases ↵ = 0 and ↵ ! 1

Eq. (4) unifies two models that have been frequently studied separately, namely the cases ↵ = 0 and ↵ ! 1. The
particular instance ↵ = 0 recovers the HMF model [4]. If we conveniently note the potential V as V↵ , we straightforwardly
verify that the HMF potential corresponds to

V0 = 1
2N

NX

i=1

NX

j=1

⇥
1 � cos

�
✓i � ✓j

�⇤
. (5)

The restriction i 6= j is not necessary anymore, and we have approximated eN = N � 1 ⇠ N . The other particular case
corresponds to first-neighbor interactions. Indeed, if we take the ↵ ! 1 limit in Eq. (4) and considering periodic boundary
conditions we obtain:

V1 = 1
2

NX

i=1

⇥
1 � cos (✓i � ✓i+1)

⇤
. (6)

The partition function for the first-neighborhood potential (6) was calculated by Mattis [24] using the transfer matrix
technique. The caloric curve (T vs. u) is therefore straightforwardly obtained. For our purpose here it is sufficient to recall
that, for u = 0.69, T ⇡ 0.7114. This value was correctly recovered in our numerical simulations for ↵ sufficiently large, as
exhibited in Fig. 1 for ↵ = 10.0.

3. Short- and long-range regimes: Lyapunov exponents

At the fundamental state, all rotators are parallel, say ✓i = 0, 8i, which corresponds to the ferromagnetically fully ordered
case. At high enough energies, the values of {✓i} are randomly distributed, which corresponds to the paramagnetic phase.
In between, for ↵ < d, a second order phase transition occurs at a critical temperature Tc = 1/2 corresponding to a critical
energy uc = 3/4 [4,14]; the order parameter is the vector magnetizationM = 1/N

PN
i=1 mi, where mi = (cos ✓i, sin ✓i).

In addition to the above, it has already been shown that, at the special value ↵/d = 1, frontier between the long- and
short-range regimes, the dynamical behavior sensibly changes. Indeed, forN ! 1 and energies corresponding to the para-
magnetic region, the largest Lyapunov exponent of themany-body system remains finite and positive for ↵/d > 1, whereas
it gradually vanishes for 0  ↵/d  1. It vanishes like N� , where (↵/d) decreases from a positive value (close to 1/3) to
zero when ↵/d increases from zero to 1, and remains zero for ↵/d � 1. It is interesting to emphasize that  does not inde-
pendently depend on (↵, d), but only on the ratio ↵/d [3,25,26]. Consistently with the fact that, for all values of the energy
per particle u in the paramagnetic region, the Lyapunov exponents vanish in the limit N ! 1,  does not depend on u.

4. Numerical procedure and results

Let us present now the microcanonical molecular-dynamical results that we have obtained for the d = 1 Hamiltonian
(4) with fixed (N, u), the total energy being Nu. To integrate the 2N equations of motion we used the Yoshida 4th-order
symplectic algorithm [27,28] with an integration step chosen in such a way that the total energy is conserved within a
relative fluctuation smaller than 10�5. Some of our present results were also checked through the standard Runge–Kutta
scheme. The class of the initial configurations that we run is the so-called water-bag: all rotators started with the same
angle ✓i = 0, 8i, and each momentum pi is drawn at random from an uniform distribution. We rescaled all the pi’s in order
to precisely achieve the total desired energy u as well as zero total angular momentum, resulting in a uniform distribution
with width 2

p
6u and zero mean.

2 If we take into account that the momentum pi involves a derivative with respect to time t, ✓̇i = @H
@pi

= pi , we verify that H = eNH̄ provided that t is

replaced by t̄ =
p

eNt .



L.J.L. Cirto et al. / Physica A 393 (2014) 286–296 289

Fig. 1. Time dependence of the kinetic temperature T (t) ⌘ 2K(t)/N for awater bag typical single initial condition for (u,N) = (0.69, 200 000) and various
values of ↵. The upper horizontal line, at T1 = 0.7114 . . . , corresponds to the BG thermal equilibrium temperature of the ↵ ! 1model at, u = 0.69 [24].
Themiddle (lower) horizontal line, at T ' 0.475 (T = 0.380), indicates the BG thermal equilibrium temperature (the QSS base temperature, corresponding
to zero magnetization), at u = 0.69 and 0  ↵ < 1 [4,14]. In the range 1  ↵ < 1, no analytical solution is available, as far as we know.

4.1. Temperature and momentum distribution

We present in Fig. 1 the instantaneous kinetic ‘‘temperature’’ T (t) ⌘ 2K(t)/N , where K(t) is the time-dependent
total kinetic energy of Hamiltonian H̄ . As verified many times in the literature, a quasi-stationary state (QSS) exists for
0  ↵/d < 1 and u ' 0.69, afterwhich a crossover is observed to a statewhose temperature coincideswith that analytically
obtainedwithin Boltzmann–Gibbs (BG) statisticalmechanics [4,23]. Sufficiently after theQSS period,whose lifetime appears
to diverge with increasing N , the kinetic temperature of the system fluctuates around its BG value as time increases. The
temporal mean value calculated within this stable region is noted Tkin ⌘ hT (t)i = h2K(t)/Ni, and is represented by the full
red points in Fig. 4.

It has been long thought that, after this crossover, the system consistently adopts a BG distribution in Gibbs � space,
and therefore a Maxwellian distribution for P(pi). The facts that we now present reveal a much more complex situation,
where robust qn-Gaussians (or distributions numerically very close to them) emerge before the crossover (just before for
most realizations of the initial conditions, but also quite a lot before for some of them) and remain so for huge times (as long
as our longest runs); n stands for numerical. This unexpected phenomenon occurs for u both below and above uc = 3/4, and
for ↵ both below and above ↵ = 1 (up to ↵ ' 2). Let us emphasize that these qn-Gaussians only develop their full shape if
sufficient time has been run in order that the apparently stationary state has been attained. This time is extremely long for
0 < u ⌧ 3/4 because the system is then almost integrable (indeed, the Hamiltonian can be straightforwardly checked to
become very close to that of N coupled harmonic oscillators, by using cos(✓i � ✓j) ⇠ 1 � 1

2 (✓i � ✓j)
2), and is also extremely

long for u � 3/4 because once again the system is almost integrable (indeed, the Hamiltonian can be straightforwardly
checked to become now very close to N independent localized rotators). Let us detail now how the single-initial-condition
one-momentum distributions P(p) are calculated within large time regions where T is nearly constant: for each value of i,
we register its pi at very many (noted n) successive times separated by an interval ⌧ , and then, following the recipe of the
Central Limit Theorem (and of its q-generalization [29–34]), we calculate its arithmetic average p̄i (thus corresponding to
the interval t 2 [tmin, tmax] with tmax � tmin = n⌧ ). We then plot the histogram for the N arithmetic averages, as illustrated
in Fig. 2. Notice that the CLT recipe is nothing but a time average, which frequently corresponds in fact to real experiments.

4.2. q-Kurtosis

All the histograms that we have obtained for sufficiently large times t are well fitted with e��qn p
2/2

qn , with (qn, �qn)

depending on (↵, u,N, ⌧ ) as well as on (tmin, tmax) where exq ⌘ [1 + (1 � q)x]1/(1�q) (q 2 R; ex1 = ex) [2,35]. To check
the quality of the fit we introduce (see Fig. 3) a conveniently q-generalized kurtosis (referred to as q-kurtosis), defined as
follows (see Ref. [36] and references therein):

q =
R 1
�1 dp p4[P(p)]2q�1/

R 1
�1 dp [P(p)]2q�1

3
⇥R 1

�1 dp p2[P(p)]q/
R 1
�1 dp [P(p)]q

⇤2 , (7)

where we have used the escort distributions. Escort distributions were, as far as we know, introduced in 1995 by Beck
and Schögl [37] and play a particular role in nonextensive statistical mechanics [2,38]. The mean values associated with
these distributions have the remarkable advantage of being finite up to q = 3, which is precisely the value below which
q-Gaussians are normalizable, i.e.

R 1
�1 dp P0e

��qp2/2
q = 1 (q < 3). The use of the standard kurtosis 1 = hp4i/3hp2i2 when

the probability distribution is a q-Gaussian has the considerable disadvantage that hp2i diverges for q � 5/3, and hp4i di-
verges for q � 7/5. Hence 1 becomes useless for q � 7/5, and it happens that some of the distributions that we observe
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Fig. 2. A typical single-initial-condition one-momentum distribution P(p) for N = 106, u = 0.69, ⌧ = 1 (corresponding to 5 molecular-dynamical
algorithmic steps), calculated in the region [tmin, tmax] = [200 000, 500 000] for ↵ = 0.9 (top plot), and ↵ = 2.0 (bottom plot). The upper temperature
indicated in the↵ = 0.9 inset coincideswith that analytically calculatedwithin BG statisticalmechanics, namely Tkin ⌘ h2K(t)/Ni ' 0.475. The horizontal
line of the ↵ = 2.0 inset corresponds to the time average calculated numerically; indeed, analytical solutions are only available for ↵ < 1 [23] and in the

↵ ! 1 limit [24]. The continuous curves correspond to P(p̄)/P0 = e
��

(P0)
qn [p̄P0]2/2

qn with (qn, �
(P0)
qn ) = (1.58, 11.2) for ↵ = 0.9 and (1.0, 6.4) for ↵ = 2.0.

The value of qn for ↵ = 0.9 corresponds to the red open circle in Fig. 3; notice that 1/�(P0)
qn 6= T in this case. Each distribution has been rescaled with its

own P0.

do exhibit qn � 7/5. If we use a q-Gaussian P(p) within Eq. (7), we obtain, through a relatively easy calculation

q(q) = 3 � q
1 + q

, (8)

as also shown in Fig. 3.

4.3. q versus ↵

In Figs. 4 and 5 we illustrate (qn, �qn) as functions of (↵, u, ⌧ ) for large values of N . All the (u, ⌧ ) = (0.69, 1) results for
qn have been also reported in Fig. 3. One of the interesting features that we can observe is that in all cases qn approaches the
BG value q = 1 when ⌧ increases. However, this approach is nearly exponential for (↵ < 1, u < 0.75), (↵ > 1, u > 0.75),
and (↵ > 1, u < 0.75), whereas it is extremely slow for (↵ < 1, u > 0.75) (notice that, in the latter case, qn exhibits
a zero slope with regard to ⌧ at ⌧ = 1), precisely the region where the largest Lyapunov exponent approaches zero with
increasing N (we remind that the d = 1 critical point for 0  ↵ < 1 is known to be uc = 3/4). This suggests the follow-
ing nonuniform convergence: limN!1 lim⌧!1 qn(↵, u,N, ⌧ ) = 1 (8↵), whereas lim⌧!1 limN!1 qn(↵, u,N, ⌧ ) > 1 (for
0  ↵ < 1). Lack of computational strength has not allowed us to directly verify this conjecture. This leaves as an interesting
open question whether lim⌧!1 limN!1 qn(↵, u,N, ⌧ ) recovers limN!1 qn(↵, u,N), where the latter would correspond to
successive approximations for increasingly large N .

For all ↵, our numerical values of q are always larger or equal to unit. This is not mandatory for Hamiltonian systems, and
neither for maps at the edge of chaos. For example, for the Fermi–Pasta–Ulam finite-size chains, values of q both above and
below unity were longstandingly observed in different regions of phase space [39] (see also Ref. [40], where it is argued –
disputably though – that q-exponentials with values of q above unity are not admissible within nonextensive statistics for
classical many-body Hamiltonians). For the case of maps at their edge of chaos, studies exhibiting values of q both above
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Fig. 3. qn and q-kurtosis qn that have been obtained from the histograms corresponding to typical values of ↵ (numbers indicated on top of the points).
The red circle corresponds to ↵ = 0.9 in Fig. 2. The continuous curve q = (3 � q)/(1 + q) is the analytical one obtained with q-Gaussians. Notice that q
is finite up to q = 3 (maximal admissible value for a q-Gaussian to be normalizable), and that it does not depend on �qn . The visible departure from the
dotted line at q = 1 corresponding to a Maxwellian distribution, neatly reflects the departure from BG thermostatistics.

Fig. 4. ↵-dependences of (qn, �qn ) for (u, ⌧ ,N) = (0.69, 1.0,N), where N = 200 000 (N = 30 000) for ↵ � 0.6 (↵  0.5), with n never smaller than
300000.We have verified the existence of finite-size effects, in particular, for ↵ above and close to unity, qn slowly decreases with increasingN . Notice that
Tkin ' 0.475 up to ↵ ' 1.35, where it starts increasing (red full circles), and, for ↵ � 1, approaches the analytical value T1 = 0.7114 . . . [24] (by using
the values that we have obtained up to ↵ = 40, we observe that approximatively T1 � T↵ ' 0.4/↵2 for ↵ � 1). The red open circles correspond to the
example in Fig. 2 (also indicated in Fig. 3). The full (open) triangles have been obtained from rescaled histograms where the momenta have been divided
by the standard deviation � (multiplied by P0, as illustrated in Fig. 2); in other words, they both indicate (through two different normalization procedures)
a single physical quantity, namely the width of the distribution. The error bars corresponding to the triangles are of the same order; the error bars of Tkin
are of the order of the full circles (red). Naturally, P0 ⇥ � is nearly constant; to take into account the numerical deviations (from a strict constant) due to
parameters such as (N, n, ⌧ ), we have normalized both �

(� )
qn and �

(P0)
qn in such a way that the analytical value T1 = 0.7114 . . . is recovered.

Fig. 5. ⌧ -dependence of qn for N = 200 000, [tmin, tmax] = [90 000, 1090 000] (hence n = 1000 000 for ⌧ = 1), and typical values of u above and below
the critical value uc = 0.75, and of ↵ above and below the special value ↵ = 1 (see Ref. [3]). All the error bars are of the same order of those indicated on
the red empty triangles. Inset: ⌧ -dependence of [qn(⌧ ) � 1]/[qn(1) � 1].
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Fig. 6. A typical single-initial-condition one-angle distribution ⇥(✓) for exactly the same conditions of Fig. 2 (↵ = 0.9 for the top plot; ↵ = 2.0 for the
bottom plot). Notice that the fitting parameters (qn, �qn ) of the present q-Gaussian ⇥(✓̄) = ⇥0e

��qn [✓̄⇥0]2/2
qn (continuous curve) practically coincide with

those of Fig. 2.

and below unity are also available [41,42]. Finally, q-exponential distributions of energy can also be seen in Ref. [43] for q
both above and below unity.

4.4. Angle distribution

To further clarify this new thermostatistical scenario it is helpful to analyze the behavior of the angles ✓i’s. In Fig. 6 we
present the angle distributions obtained in exactly the same conditions of the previously shown momenta distributions
(see Fig. 2). The numerical solution of the equations of motion of system (4) provides an unbound domain for the canonical
variables ✓i’s, namely ✓i(t) 2 (�1, +1). Notice though that the dynamics itself depends solely on the values of the phase
modulo 2⇡ since angles ✓i’s appear as arguments of sine and cosine functions. An unbound representation for the angles is
quite convenient since it directly reflects the continuous rotations of the rotors (see also Ref. [44]).

4.5. Time versus ensemble averages

Let us focus on here a very interesting issue, namely the discrepancy between ensemble averages and time averages,
which reveals the nonergodicity of the present system whenever the interactions are sufficiently long-ranged. This phe-
nomenon occurs, interestingly enough, even after the kinetic temperature has reached its BG value. In Fig. 7, time and ensem-
ble averages are compared for ↵ = 0.9 and N = 200 000. The initial conditions are the same used in the previous results,
namely the system startswithmagnetizationM = 1,which is followed by a violent relaxation, bringing it to theQSS. Though
N is considerably large, the QSS duration is relatively short since ↵ = 0.9. After this short QSS period, the system exhibits a
crossover to the BG kinetic temperature. As indicated in the top of Fig. 7, photographies of the velocities of all the particles
were taken at t = 90 000, 240 000 and 360000. In order to approach an ensemble average, this procedure was repeated for
50 realizations and the histograms of the velocities were calculated through simple (arithmetic) means (see Fig. 7(a, b, c)).
For one of these realizations, a time averagewas calculated within the interval t 2 [90 000, 360 000] (see Fig. 7(d)).

The interesting and deep discrepancy that we observe here between time and ensemble averages (i.e., lack of ergodicity)
for relatively small values of ↵ is consistent with what was previously obtained [45] for ↵ = 0 and small values of N
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Fig. 7. Top figure: Time evolution of the kinetic temperature T for (↵, u,N) = (0.90, 0.69, 200 000) averaged over 50 different realizations, i.e., we run the
system 50 times with different seeds of the random number generator for the initial uniform velocity distribution. After that, a simple (arithmetic) average
has been calculated. One of these 50 realizations was also shown in Fig. 1. Panels (a), (b) and (c): The averages over these 50 realizations of the momenta
distribution (by hpi we denote the average over the realizations) at three distinct times, namely at t = 90 000, t = 240 000 and t = 390 000, as indicated
in the top figure. Let us mention that the Gaussian shape of these averaged distributions remains essentially the same from a few realizations on; in other
words, 50 realizations is largely above what would be numerically necessary in order to have invariant results. Panel (d): Time average calculated within
the interval t 2 [900 000, 390 000] for a single realization. Let us stress that the q-Gaussian shape becomes increasingly better (especially in the tails) with
increasing N , as can be seen by comparing the present figure (d) with Fig. 2 (top). Although not shown here, all the corresponding panels (a–d) essentially
coincide among them for ↵ large enough (say ↵ = 2), and they provide a Gaussian shape, as expected for an ergodic system.

(N = 100 in that case; see Fig. 4 in Ref. [45]). Actually, the study reported in Ref. [45] mainly focused on the QSS regime
of the HMF system (see also Ref. [46] as well as Ref. [47]). It was later clarified [48] that, for (↵, u) = (0, 0.69) and N up
to N ⇡ 20 000, one can distinguish three classes of QSS events (which were referred to as classes 1, 2 and 3) whenever
the system starts with a water-bag initial condition as described in the above Section 4. In Ref. [48], the q-Gaussian one-
momentum distributions were obtained for the class 1 events. It was, however, verified that, for increasingly large N , many
of the QSS events belong to class 3. Let us mention by the way that the only type of events investigated here precisely are
those of class 3: typical ↵ < 1 patterns are included in Fig. 1.

5. Final remarks

Summarizing, it has been observed for at least one decade that, for 0  ↵ < 1, the longstandingQSSs of the presentmodel
(i.e., the ↵-XY system of rotators) exhibit anomalous distributions (Vlasov-like for some classes of initial conditions, and
different, including q-Gaussian-shaped, ones for other classes) for themomenta of the rotators, whereas nothing particularly
astonishing was expected to occur once the system had done the crossover to the (presumably stationary) state whose
kinetic temperature coincides with that analytically obtained within the BG theory.

The present results (obtained from first principles, i.e., using essentially nothing but Newton’s law) neatly show that, if
time is large enough so that the kinetic-temperature crossover has occurred (as illustrated in the Inset of Fig. 2), the situation
is farmore complex. Indeed, robust and longstanding q-Gaussian distributions are numerically observed under awide variety
of situations. The fact that thenumerical kinetic temperature be the onepredictedwithin theBG theory is sometimes thought
as a sufficient condition for standard statistical mechanics to be applicable. However, the lack of ergodicity caused by the
long-range nature of the interactions shows that, at the time range we are focusing on [49], the discussion is more subtle.
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Indeed, the shape of the momenta distributions can considerably and longstandingly differ from Gaussians, and it is only
when the correlations become negligible (i.e., when ⌧ � 1 and/or ↵ � 1) that the classical Maxwellian distribution (with
��1
qn = T ) is (numerically) recovered. Similar results are also observed for the angle distributions, as illustrated in Fig. 6. The

full discussion of the angle distributions is out of the scope of the present paper and will be discussed in detail elsewhere.
Let us mention at this point that the breakdown of ergodicity which emerges for ↵/d  1 [45,48,50] as indicated in

Fig. 7 is neatly worthy of further consideration (see also, for a quantum system, [51]). Indeed, within the BG framework,
not only the kinetic temperature (or the magnetization) must coincide with the canonical prediction, but a Maxwellian
form also is expected in the velocity distribution, independently on whether it is time or ensemble averages which are
being calculated. However, we have shown that long-range interactions make the physical scenario much more delicate.
It is the aim of nonextensive statistical mechanics [2,6] to provide a possible frame for discussing such difficult cases.
Within this generalized theory, a plausible thermostatistical scenario could be as follows. The stationary state is expected
to yield a probability distribution e��qH̄

q /Zq(�q) with Zq(�q) ⌘
R
dp1 . . . dpNd✓1 . . . d✓Ne

��qH̄
q . The index q is expected to

characterize universality classes, possibly a function q(↵/d) to be different from 1 for 0  ↵/d < 1, and equal to 1
for ↵/d � 1. If this is so, an interesting quantity would of course be the one-momentum marginal probability P(p1) =R
dp2 . . . dpNd✓1 . . . d✓Ne

��qH̄
q /Zq. The functional form of P(p1) is unknown. A possibility could however be that, in theN !

1 limit, we simply have P(p1) / e
��qm p21/2
qm , i.e., a qm-Gaussian form, where m stands for momentum. Indeed, q-Gaussians

emerge extremely frequently in complex systems (see, e.g., [8–11,39,41,42,52–56]; see also [57–63] for high energy physics).
The index qm could depend not only on ↵/d, but also, in principle, on u. Similar considerations are in order for the one-angle
marginal probability ⇥(✓1) =

R
dp1 . . . dpNd✓2 . . . d✓Ne

��qH̄
q /Zq, whose precise analytical form also is unknown.

The present example,with its neat and sensible drift fromBGbehavior for short-range interactions to non-BGbehavior for
long-range interactions, constitutes a novel illustration of the great thermostatistical richness that a breakdownof ergodicity
can cause. It also serves as an invitation for deeper analysis of the thermal statistics of all those very many models in
the literature that are definitively nonergodic (e.g., glasses, spin-glasses, among others), and for which, nevertheless, the
BG theory is straightforwardly used without further justification. It illustrates Gibbs’ remark [1] that standard statistical
mechanics are not justifiedwhenever the canonical partition function diverges (which is the case for long-range interactions,
i.e., for 0  ↵  1).
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