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Abstract – The dynamics and thermostatistics of a classical inertial XY model, characterized by
long-range interactions, are investigated on d-dimensional lattices (d = 1, 2, and 3), through molec-
ular dynamics. The interactions between rotators decay with the distance rij like 1/rα

ij (α ≥ 0),
where α → ∞ and α = 0 respectively correspond to the nearest-neighbor and infinite-range inter-
actions. We verify that the momenta probability distributions are Maxwellians in the short-range
regime, whereas q-Gaussians emerge in the long-range regime. Moreover, in this latter regime,
the individual energy probability distributions are characterized by long tails, corresponding to q-
exponential functions. The present investigation strongly indicates that, in the long-range regime,
central properties fall out of the scope of Boltzmann-Gibbs statistical mechanics, depending on d
and α through the ratio α/d.

Copyright c© EPLA, 2018

Systems with long-range-interacting elements have been
object of many researches and controversies. Usually, these
systems are addressed through statistical-mechanical tech-
niques, and they cover from physical, biological, and math-
ematical models to complex networks [1–21]. Interesting
phenomena, like breakdown of ergodicity, nonequivalence
of statistical ensembles, and long-lived quasistationary
states, emerge frequently when long-range forces come
into play; such situations usually fall out of the scope of
Boltzmann-Gibbs (BG) statistical mechanics, which has
been developed assuming explicitly, or tacitly, short-range
interactions between elements.

For N -body Hamiltonian systems in d-dimensions, with
a potential Φ(r) ∝ 1/rα, the case α/d = 1 represents a
threshold between long- and short-range regimes. By con-
sidering a model ruled by this power-law dependence, one
interpolates between the infinite-range-interaction (α = 0)
and the nearest-neighbor (α → ∞) limits, allowing to
investigate the influence of the interaction range on the
thermostatistics of the model. In the long-range regime,
corresponding to 0 ≤ α ≤ d, the potential energy, as well
as the total energy, scale superlinearly with N so that

the system is said to be nonextensive. In this case, BG
statistical mechanics faces several difficulties. In order
to derive thermodynamic properties one may redefine the
thermodynamic limit [3–6], or employ a properly general-
ized Kac’s prescription, by weakening the strength of inter-
particle forces as the system size N increases —an artificial
modification of the model to turn its total energy exten-
sive. However, even if extensivity is formally recovered
by a microscopic modification like Kac’s prescription, the
system preserves its long-range nature for small values of
α. For instance, one may mention the behavior of the Lya-
punov exponent [6,7], the presence of non-Boltzmannian
quasistationary states (QSSs) [8–10,22], the emergence
of typical nonextensive features like q-Gaussians and
q-exponentials [10–12], among others. Some of those fea-
tures remain beyond the threshold α/d = 1, where the
system can still display long-range properties (see, e.g.,
ref. [13] and references therein).

A paradigmatic Hamiltonian model, frequently used to
investigate several of the above-mentioned properties, is
defined in terms of classical XY rotators with infinite-
range interactions. In this limit, the BG equilibrium state
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is exactly tractable within the standard mean-field ap-
proach. Due to this, this model is usually known in the lit-
erature as the Hamiltonian-Mean-Field (HMF) one [1,14].
The HMF model has been numerically and analytically
studied intensively in the last two decades, and one of its
intriguing features concerns the existence of QSSs whose
lifetime diverges as the system size N increases. Partic-
ularly, these QSSs exhibit a clear breakdown of ergod-
icity, in the sense that velocity distributions calculated
from time averages [15,16] appear to be quite different
from those of ensemble averages [1,10,15,16,23–26]. More-
over, for any finite N , the QSSs are followed by a second
plateau at longer times, which presents a kinetic temper-
ature that coincides with the one calculated analytically
from BG statistical mechanics, although it also exhibits
further curious properties, like time-averaged long-tailed
velocity distributions [10], in notorious contrast with the
BG theory.

Herein we present a numerical analysis of the so-called
α-XY model, which consists of a classical XY rotator
system, with controllable range of (ferromagnetic) inter-
actions, decaying like 1/rα. Previous results (α = 0
and d = 1) revealed, among other nonstandard fea-
tures, non-Maxwellian velocity distributions [10,15,16]. In
the short-range regime, on the other hand, all the stan-
dard BG results are recovered, including, naturally, the
Maxwellian distribution. It has been verified that these
non-Maxwellian distributions are well fitted along several
decades with the so-called q-Gaussians, landmark func-
tions of nonextensive statistical mechanics, built on the
basis of the nonadditive entropy Sq [27–29]; similarly,
Maxwellians represent a landmark of BG statistics, built
from the additive entropy SBG. Indeed, the entropy Sq is
defined as a generalization of SBG,

Sq = k

W∑

i=1

pi lnq
1

pi

[
lnq x ≡

x1−q − 1

1 − q
; (x > 0)

]
, (1)

where W accounts for the microscopic configurations,
and lnq x denotes the q-logarithm; we verify that
SBG ≡ −k

∑
pi ln pi = limq→1 Sq. The q-exponential

expq[−βx] = [1 − β(1 − q)x]1/(1−q) and the q-
Gaussian expq[−βx2] appear naturally by extremizing
Sq under appropriate constraints [27–29]. The gener-
alized thermostatistics based on Sq frequently applies
when assumptions underlying the BG thermostatistics
are not fulfilled (like, e.g., mixing and ergodicity)
[10–12,19,20,29–33].

In the present work we are primarily interested on how
α/d influences the one-particle velocity and energy distri-
butions of the α-XY model, focusing mainly on the sec-
ond plateau that follows the QSS at longer times. We
explore how higher values of d modify previous d = 1
results for the velocity distribution; moreover, we show
how the energy distribution changes from the celebrated
exponential Boltzmann weight to a distribution well de-
scribed by a q-exponential, as the system goes from the

short- to the long-range regime. We have also verified a
universal scaling law of these distributions governed by
the α/d ratio, similarly to what was found in other com-
plex systems [19,20].

We consider the α-XY model on d-dimensional hyper-
cubic lattices, defined by a Hamiltonian, H = K + V
(kinetic and potential contributions, respectively), conve-
niently written below in terms of one-particle energies Ei,

H =
N∑

i=1

Ei; Ei =
1

2
p2

i +
1

2Ñ

N∑

j �=i

1 − cos (θi − θj)

rα
ij

. (2)

At a given time t, each rotator i (i = 1, 2, . . . , N) is
characterized by the angle θi(t) and its conjugated mo-
mentum pi(t), so that the dynamics of the system follows
from the Hamilton equations of motion,

θ̇i =
∂H

∂pi
= pi; ṗi = −

∂H

∂θi
= −

1

Ñ

N∑

j �=i

sin (θi − θj)

rα
ij

, (3)

where rij = |ri − rj | measures the distance between ro-
tators at sites i and j in lattice units, and it is defined
as the minimal one, given that periodic conditions will be
considered. The parameter α ≥ 0 controls the interaction
range, whereas the scaling prefactor 1/Ñ in the poten-
tial energy of Hamiltonian (2) is introduced to make the
energy extensive for all values of α/d, where [3,4,6,17,18]

Ñ =
1

N

N∑

i=1

N∑

j �=i

1

rα
ij

=
N∑

j=2

1

rα
1j

(Ñ = 2d for α → ∞), (4)

the 0 ≤ α/d ≤ 1 (α/d > 1) regime being hereafter referred
to as long-range (short-range). Notice that when α = 0,

we get Ñ = N − 1 ∼ N , so that eq. (2) recovers the HMF
model.

The results that follow were obtained from microcanoni-
cal molecular-dynamical simulations of a single realization
of the system defined in (2), considering fixed values for
the number of rotators N and energy per particle u, so
that the total energy E = Nu is a constant. To inte-
grate the 2N equations of motion in (3), we have used
the Yoshida 4th-order symplectic algorithm [34], choosing
an integration step in such a way to yield a conservation
of the total energy within a relative fluctuation always
smaller than 10−5. At the initial time, all rotators were
started with θi = 0 (∀i); moreover, each momentum pi was
drawn from a symmetric uniform distribution pi ∈ [−1, 1],
and then rescaled to achieve the desired energy u, as well
as zero total angular momentum P =

∑
i pi = 0, which

also is a constant of motion. As verified by many authors
(see, e.g., refs. [8,10,22]), the model in eq. (2) exhibits
a QSS for 0 ≤ α/d < 1 and u ≃ 0.69, after which, a
crossover to a state whose temperature coincides with the
one obtained within BG statistical mechanics [14,18] oc-
curs; herein we explore further properties of this model for
the energy u = 0.69.
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Fig. 1: (Colour online) Distributions of time-averaged momenta p̄i and energies Ēi (with τ = 1) for α/d = 0.9, in d = 1, 2 and
3 dimensions. The simulations were carried for the energy per particle u = 0.69 and total number of rotators N = 1000000.
(a) The distribution P (p̄i) is shown (P0 ≡ P (p̄i = 0)); the full line is a q-Gaussian with qp = 1.59 and βp = 5.6; the dashed line
is a Gaussian (q = 1). The left inset shows the same data in a q-logarithm vs. squared-momentum representation; a straight line
is obtained as expected (since lnq(e

x
q ) = x). (b) The full line represents the q-exponential P (Ēi) = P (µ) expqE

[−βE(Ēi − µ)],
with qE = 1.31 (βE = 48.0, µ = 0.69, and P (µ) = 12); the corresponding exponential (dashed line) is also shown for comparison.
Since the density of states is necessary to reproduce the entire range of data, the parameter µ was introduced in the fitting.
The bottom inset shows a straight line by using the q-logarithm in the ordinate. The kinetic temperature T (t) ≡ 2K(t)/N ,
and time window Δt along which the time averages were calculated, coincide in both cases (shown as insets). In all plots one
notices the collapse of all dimensions with nearly the same value of q.

In fig. 1 we present results for distributions of mo-
menta (fig. 1(a)) and energies (fig. 1(b)) of the model on
hypercubic lattices (d = 1, 2 and 3), in the long-range
regime, more specifically, α/d = 0.9. In the insets on
the right-hand sides we show the time evolution of the ki-
netic temperature T (t) = 2K(t)/N , as well as the time
interval considered for the histograms. These distribu-
tions were calculated by registering n times, e.g., the
momenta pi(t) (∀i), at successive times separated by an
interval τ , and then, following the Central Limit Theorem
recipe, the arithmetic average p̄i = 1

n

∑n−1
k=0 pi(t0 + kτ)

was obtained, leading to a histogram of these N arith-
metic averages. Notice that such a recipe yields precisely
a time average in this case (associated with the time win-
dow Δt = nτ), a situation that frequently corresponds
to real experiments. In order to improve the statistics
of the histograms, we have considered rather large sys-
tems, up to N = 106, for a single numerical realization
in each dimension d. Curiously, although the kinetic tem-
perature coincides with the BG prediction, the momentum
distribution is quite distinct from a Gaussian; indeed, due
to the long-range nature of the interactions, the resulting
distribution exhibits a q-Gaussian form, as already ob-
served in previous (d, α) = (1, 0) works [10,15,16]; fig. 1(a)
extends these investigations to higher dimensions. Re-
peating the foregoing procedure to the one-particle ener-
gies Ei(t) (cf. eq. (2)), the distributions in fig. 1(b) are
obtained. One sees that a q-Gaussian emerges as the dis-
tribution of momenta (instead of a Maxwellian), whereas
a q-exponential appears for the energies (instead of the
exponential Boltzmann weight). The results of figs. 1(a)
and (b) are clearly out of the BG world and in close

agreement with the predictions of q-generalized statistical
mechanics.

The histograms shown in figs. 1(a), (b) were obtained
from numerical simulations of N = 106 rotators with τ = 1
(5 integration steps) and n = 300000; however, a system-
atic study for several values of α/d was carried by con-
sidering a smaller number of rotators (and consequently,
different time windows), due to computational costs. In
figs. 2(a), (b) we present the values of q obtained from the
distributions of time-averaged momenta p̄i and energies
Ēi (labeled by qp and qE , respectively) vs. α/d in d = 1,2
and 3 dimensions. It should be mentioned that the results
of fig. 2(a) are in good agreement with previous studies of
the d = 1 case [10]; here we also investigate d = 2, 3. A
remarkable collapse is shown (within error bars) as a func-
tion of α/d for all dimensions; notice also that, generically,
qp and qE do not coincide. Intriguingly, these values of q
do not attain unit around α/d = 1, but rather at some
higher value, close to α/d = 2. This fact has also been ob-
served in recent simulations of other models with power-
law decay of interactions: i) a one-dimensional quantum
Ising ferromagnet [35]; ii) a Fermi-Pasta-Ulam–like one-
dimensional Hamiltonian with a quartic coupling constant
decaying with the distance between oscillators [11,12,36];
iii) scale-free complex networks [19,20]. Similarly to the
present investigation, in these previous works three dis-
tinct regimes were found, namely, a non-BG long-range in-
teracting regime (0 ≤ α/d ≤ 1), a non-BG short-range one
(1 < α/d ≤ ac), and the standard BG short-range regime
(α/d > ac); for some classical Hamiltonians, ac ≈ 2,
whereas, for complex networks, ac ≈ 5. The existence
of these three regimes might be related to ergodicity and
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Fig. 2: (Colour online) (α/d)-dependence of the indices qp and qE associated respectively with the distributions of time-averaged
momenta p̄i and energies Ēi for d = 1, 2, 3 and u = 0.69. The insets show the corresponding q-kurtosis (a) and q-ratio (b),
compared to the analytical results (solid curves). The full bullets correspond to the values for α = 0. Notice that, within the
error bars, the indices q remain constant for 0 ≤ α/d ≤ 1, and approach unit only around α/d = 2 (see text).

phase-space structure. More precisely, strong indications
exist that, for 0 ≤ α/d ≤ 1 (α/d > 1), weak (strong)
chaos emerges [6,7]. How come an intermediate region
(1 < α/d < ac) exists, which is ergodic and nevertheless
non-BG? A plausible explanation is that, similarly to the
web map [37], ergodicity takes place in a multifractal-like
region and not in the entire phase space (or in a nonzero
Lebesgue measure of it). Furthermore, it should be men-
tioned that the results qp = qE could be due to finite-size
effects, but this point deserves further investigation. In-
deed, the plethoric results pointing out in many systems
the existence of q-triplets and related structures [38,39]
could in principle emerge here as well, thus leading to val-
ues of q’s that differ among them for different basic quan-
tities. These values could satisfy relations among them
which would leave only a small number as independent
ones, being all the others functions of those few.

To check the q-Gaussian fits in the one-particle momen-
tum distribution, we used the q-kurtosis [10],

κq (q) ≡
1

3

〈
p4

〉
2q−1

〈p2〉2q
=

3 − q

1 + q
, (5)

whereas for the energies, we used the q-ratio [36]

ρq (q) ≡
1

2

〈
ǫ2

〉
2q−1

〈ǫ〉
2
q

= 2 − q, (6)

the q-moments being defined as [10,28,29]

〈xm〉f(q) =

∫
dxxm[P (x)]f(q)

∫
dx[P (x)]f(q)

[f(q) ≡ 1 + m(q − 1)] , (7)

with x = p2 (x = ǫ) for eq. (5) (eq. (6)). From the mo-
mentum and energy histograms we have computed κqp

(qp)
and ρqE

(qE) for several values of α/d: see insets of
figs. 2(a), (b). These numerical data exhibit good agree-
ment with the above analytical results. Naturally, nei-
ther numerical nor experimental results will ever produce
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Fig. 3: Distributions for time-averaged momenta p̄i and ener-
gies Ēi are shown for α/d = 2 (d = 1, 2, 3). For the momenta
we have used conveniently scaled variables (like in fig. 1(a)),
and the full line is the Maxwellian (q = 1); the left inset shows
the same data in a logarithm vs. squared-momentum represen-
tation. The right inset exhibits ln[P (Ēi)/P (µ)] vs. βE(Ēi −µ).
Similarly to fig. 1(b), we verify the appearance of d-dependent
densities of states; the full line is an exponential in the variable
βE(Ēi − µ).

mathematical proofs of whatever analytical expressions of
any theory. Interesting illustrations of this trivial fact have
been discussed some years ago for compact-support nu-
merical distributions [40,41]. Let us however emphasize
that, in the present case, we are focusing on fat-tailed dis-
tributions on which such numerical coincidences certainly
are much harder to occur along many decades.

For completeness, in fig. 3 we present distributions
for time-averaged momenta p̄i and energies Ēi, for the
short-range-interaction regime α/d = 2 (d = 1, 2, 3).
For the momenta, our data are well fitted by a Gaus-
sian, whereas for the energies one notices a straight line
for Ēi > μ (see right inset), landmark of the Boltz-
mann weight. For α/d = 2, the lattice dimensionality
starts playing an important role, clearly detected in the
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different time window. The left inset presents the same data in
a q-logarithm vs. squared-momentum representation; the full
straight line is a q-Gaussian with q = 1.17. One should notice
the collapse of all dimensions with nearly the same value of q.
The right inset shows T (t) ≡ 2K(t)/N and the time window Δt
along which the time averages were calculated (t ∈ [1, 21]×103).

numerical simulations: i) different dimensions are charac-
terized by distinct density of states, so that the collapse
of the energy distributions only occurs for Ēi > μ; ii)
the number of nearest-neighbor rotators increases with
d, which directly reflects on the computational time of
the simulations (for this reason, we have considered N =
262144 for d = 1, and N = 46656 for d = 2, 3).

In fig. 4 we present distributions of momenta for the
same systems considered in fig. 1(a), but now for a sub-
stantially earlier time window (t ∈ [1, 21] × 103), within
the QSS. Once again, the collapse of all three histograms
(d = 1, 2, 3) into a single q-Gaussian is observed, although
for a smaller value, qp = 1.17. The duration tQSS of such a
QSS increases with N and decreases with α/d [1,8,10,16];
we verified that tQSS ∼ Nγ(α/d) with γ(0.9) ≃ 0.6. There-
fore, the analysis of histograms in the QSS must take into
account the window Δt for the time averages, according
to N and α/d. A detailed study of these effects is out
of our present scope and represents a matter for future
investigations.

To summarize, we have presented molecular-dynamics
results for a classical inertial XY model, on d-dimensional
lattices (d = 1, 2, 3), characterized by interactions with a
variable range. These interactions decay with the distance
rij between rotators at sites i and j, like 1/rα

ij (α ≥ 0),
so that, by increasing gradually the parameter α, one in-
terpolates between the infinite-range-interaction (α = 0)
and the nearest-neighbor (α → ∞) limits. Our nu-
merical analyses strongly suggest that crucial properties,
like probability distributions, depend on the ratio α/d,
rather than on α and d separately. For sufficiently high
values of α/d we have found Maxwellians for the mo-
menta, as well as the Boltzmann weight for the ener-
gies. On the other hand, in the long-range-interaction
regime (α/d < 1), we have observed q-Gaussians for the

time-averaged momenta, as well as q-exponential distri-
butions for the time-averaged energies, thus undoubtedly
falling out of the scope of Boltzmann-Gibbs statistical me-
chanics. The present study corroborates investigations on
different long-range systems, such as the extended Fermi-
Pasta-Ulam model and complex networks, thus showing
that central properties depend on the ratio α/d. In par-
ticular, the values of the indices q herein found vary as
q = q(α/d), in full agreement with the theoretical expec-
tations of nonextensive statistical mechanics.
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