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The computational study commented by Touchette opens the door to a desirable generalization of
standard large deviation theory for special, though ubiquitous, correlations. We focus on three inter-
related aspects: (i) numerical results strongly suggest that the standard exponential probability law is
asymptotically replaced by a power-law dominant term; (ii) a subdominant term appears to reinforce
the thermodynamically extensive entropic nature of q-generalized rate function; (iii) the correlations we
discussed, correspond to Q -Gaussian distributions, differing from Lévy’s, except in the case of Cauchy–
Lorentz distributions. Touchette has agreeably discussed point (i), but, unfortunately, points (ii) and (iii)
escaped to his analysis. Claiming the absence of connection with q-exponentials is unjustified.

© 2012 Elsevier B.V. All rights reserved.

Before addressing in detail the Comment by Touchette [1] on
our paper [2], let us describe the physical scenario within which
we have undertaken a possible generalization of the standard large
deviation theory (LDT). A standard many-body Hamiltonian sys-
tem in thermal equilibrium with a thermostat at temperature T
is described by the Boltzmann–Gibbs (BG) weight, proportional to
e−βHN = e−β[HN /N]N , where HN is the N-particle Hamiltonian,
and β ≡ 1/kB T . For standard Hamiltonian systems (typically in-
volving short-range interactions and an ergodic behavior), the to-
tal energy is extensive. Consequently, the quantity [HN/N] scales
with N , analogously to a (thermodynamically) intensive variable.
This is to be compared with the LDT probability P (N) ∼ e−r1 N ,
where the rate function r1 (the meaning of the subindex 1 will
soon become clear) is related to a BG entropic quantity per parti-
cle, and plays a role analogous to β[HN/N] (we remind that, for
such standard systems, β is an intensive variable).

If now we focus on say a d-dimensional classical system involv-
ing two-body interactions whose potential asymptotically decays
at long distance r like −A/rα (A > 0;α � 0), the canonical BG
partition function converges whenever the potential is integrable,
i.e. for α/d > 1 (short-range interactions), and diverges whenever
it is nonintegrable, i.e. for 0 � α/d � 1 (long-range interactions).
The use of the BG weight becomes unjustified (“illusory” in Gibbs
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words [3] for say Newtonian gravitation, which in the present
notation corresponds to (α,d) = (1,3), hence α/d = 1/3) in the
later case because of the divergence of the BG partition function.
We might therefore expect the emergence of some function f (HN )

different from the exponential one, in order to describe some
specific stationary (or quasi-stationary) states differing from ther-
mal equilibrium. The Hamiltonian HN generically scales like N Ñ

with Ñ ≡ N1−α/d−1
1−α/d ≡ lnα/d N (with the q-logarithmic function de-

fined as lnq z ≡ z1−q−1
1−q ; z > 0; ln1 z = ln z). Notice that (N → ∞)

Ñ ∼ N1−α/d/(1 − α/d) for 1 � α/d < 1, Ñ ∼ ln N for α/d = 1, and
Ñ ∼ 1/(α/d − 1) for α/d > 1. The particular case α = 0 yields
Ñ ∼ N , thus recovering the usual prefactor of Mean Field theo-
ries. The quantity βHN can be rewritten as [(β Ñ)HN /(N Ñ)]N =
[β̃HN/(N Ñ)]N , where β̃ ≡ β Ñ ≡ 1/kB T̃ = Ñ/kB T plays the role
of an intensive variable. The correctness of all these scalings has
been profusely verified in various kinds of thermal [4], diffu-
sive [5] and geometrical (percolation) [6] systems (see also [7,
8]). We see that, not only for the usual case of short-range in-
teractions but also for long-range ones, [β̃HN/(N Ñ)] plays a role
analogous to an intensive variable. The q-exponential function ez

q ≡
[1 + (1 − q)z] 1

1−q (ez
1 = ez) (and its associated q-Gaussian [9]) has

already emerged, in a considerable amount of nonextensive and
similar systems (see [10–31] among others), as the appropriate
generalization of the exponential one (and its associated Gaus-
sian). Therefore, it appears as rather natural to conjecture that,
in some sense that remains to be precisely defined, the LDT ex-

pression e−r1 N becomes generalized into something close to e
−rq N
q

(q ∈ R), where the generalized function rate rq should be some
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Fig. 1. Detailed numerical verification of the conjecture given by Eq. (2) in one of the 10 “lines” (the bottom one, to be more precise) observed in Fig. 2 for x = 0.1. This
procedure enables a high precision numerical determination of B(x) for any chosen value of x. For a given (Q , γ , δ) model, the value of B(x) is one and the same for
all the “lines” associated with a given value of x. Not so for C(x): indeed, for fixed x, we observe the existence of a set of values for C(x) which we note {C j(x)}, with
j = 1,2, . . . , jmax (in the present illustration jmax = 10). The finiteness of the set {C j(x)} here and in Fig. 2 means that the corrections to the N−η power in Eq. (1) are of the
1/N order. The finiteness that we observe (here and in Fig. 2) in the slopes at the origin means that the next corrections are of the 1/N2 order. In this example, we have
run N up to 11 × 106.

generalized entropic quantity per particle. Let us stress a crucial
point: we are not proposing for long-range interactions, and other

nonstandard systems, something like e
−rq Nγ

q with γ �= 1, but we
are expecting instead γ = 1, i.e., the extensivity of the total q-
generalized entropic form to still hold [32], in order to be con-
sistent with many other related results (e.g., [8,33–35]). We shall
soon see that this important assumption indeed appears to be ver-
ified in the model, characterized by (Q , γ , δ), that we numerically
studied in [2].

Let us start by exhibiting that its N → ∞ LDT asymptotic be-
havior numerically satisfies

P (N;n/N < x) ∼ B(x)

Nη

[
1 − C(x)

N

] (
B(x) > 0; C(x) > 0

)
, (1)

with η ≡ 1
q−1 = γ (3−Q )

Q −1 > 0 [2]. This implies the existence of
a generically positive finite B(x) such that

lim
N→∞

[
1 − P (N;n/N < x)Nη

B(x)

]
N = C(x), (2)

C(x) being a generically positive finite number for all values of x
different from 1/2. This is indeed verified, as exhibited in Figs. 1
and 2. More precisely, we verify for fixed (Q , γ , δ) that B(x) is
unique for any given x, whereas C(x) is in fact a set of values, noted
{C j(x)}, with j = 1,2, . . . , jmax (the value of jmax depends on x;
for example, we can see that, for the illustration exhibited in Fig. 2,
jmax = 10 for x = 0.1). Let us emphasize that the 1/N correction to
the power law 1/Nη in (1) is consistent with the total entropy of
the system always being extensive in the thermodynamical sense.

Let us next check the conjecture made in [2], namely that
P (N;n/N < x) is, for q > 1, well approached by

P (N;n/N < x)

= a(x)e
−rq(x)N
q

= a(x)

[1 + (q − 1)rq(x)] 1
q−1

e
− rq(x)

1+(q−1)rq(x) (N−1)

q

= e
−{ rq(x)

[a(x)]q−1 N+ 1−[a(x)]q−1

(q−1)[a(x)]q−1

}
q

= a(x)

[1 + (q − 1)rq(x)N] 1
q−1

= a(x)

[(q − 1)rq(x)N] 1
q−1

×
[

1 − 1

(q − 1)2rq(x)N
+ q

2(q − 1)4(rq(x)N)2

− q(2q − 1)

6(q − 1)6(rq(x)N)3
+ · · ·

]

= a(x)

[(q − 1)rq(x)N] 1
q−1

×
[

1 − 1

(q − 1)2rq(x)N

+
∞∑

m=2

(−1)m q(2q − 1) · · · [(m − 1)q − (m − 2)]
m!(q − 1)2m(rq(x)N)m

]
. (3)

By identifying this expansion with Eq. (1) we obtain

a j(x) = B(x)
[
(q − 1)r( j)

q (x)
] 1

q−1 ( j = 1,2, . . . , jmax), (4)

and

r( j)
q (x) = 1

(q − 1)2C j(x)
( j = 1,2, . . . , jmax). (5)

Since B(x) and {C j(x)} are numerically known, we can easily

calculate {a j(x)} and {r( j)
q (x)} by using Eqs. (4) and (5). Knowing

these, we calculate a j(x)e
−r( j)

q (x)N
q ( j = 1,2, . . . , jmax) and compare

with our numerical data. We then bound our numerical results
from both below and above (see Figs. 3 and 4 for illustrations).
More precisely, for each value of x, we have adopted two values,
noted Clower bound(x) and Cupper bound(x), such that q-exponential
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Fig. 2. Numerical verification of the conjecture given by Eq. (2), N running up to
11 × 106. For fixed x, B(x) is unique, whereas C(x) corresponds to a set of val-
ues {C j} ( j = 1,2, . . . , jmax), where jmax depends on x. We also see that the next
correction is of the type 1/N2. The upper and lower values Cmin and Cmax that
are indicated by the arrows precisely correspond to the upper and lower bounds
r(lower bound)

q (x) and r(upper bound)
q (x) such that all present numerical results are within

two q-exponentials, as indicated in Figs. 3 and 4.

Fig. 3. Comparison of our numerical data (dots) with a(x)e
−rq N
q , where (a(x), rq(x))

have been calculated from (B(x), C(x)) by using Eqs. (4) and (5). The values for
C(x) that have been used are those indicated by arrows in Fig. 2. Two values for x,
namely x = 0.10 and x = 0.35, have been illustrated here.

upper and lower bounds for the entire set of numerical val-
ues for P (N;n/N < x) are obtained. These Clower bound(x) and
Cupper bound(x) values turn out to be comparable to the correspond-
ing set {C j(x)} (see Fig. 2). In other words, we obtain the values

of Clower bound(x), Cupper bound(x), r(upper bound)
q (x) and r(lower bound)

q (x),
consistent with Eq. (5). By introducing these values in Eq. (4) we
obtain a(upper bound)

q (x) and a(lower bound)
q (x), and verify that, in the

model studied in [2], ∀x, ∀N ,

B(x)
[
(q − 1)r(lower bound)

q (x)
] 1

q−1 e
−r(lower bound)

q (x)N
q

= B(x)

N
1

q−1

[
1 − 1

(q − 1)2r(lower bound)
q (x)

1

N
+ o

(
1/N2)]

� P (N;n/N < x)

Fig. 4. The same data of Fig. 3 in (q-log)-linear representation. Let us stress that the
unique asymptotically-power-law function which provides straight lines at all scales
of a (q-log)-linear representation is the q-exponential function. The inset shows the
results corresponding to N up to 50.

Fig. 5. x-dependences of the lower and upper bounds for the rate function rq(x)
obtained from q-exponential fittings of the numerical data (see Figs. 3 and 4). The
analytical curves I3/2(x) and I5/3(x) are included for comparison. The inset exhibits
the quasi-parabolic behavior at both sides of x = 1/2.

� B(x)
[
(q − 1)r(upper bound)

q (x)
] 1

q−1 e
−r(upper bound)

q (x)N
q

= B(x)

N
1

q−1

[
1 − 1

(q − 1)2r(upper bound)
q (x)

1

N
+ o

(
1/N2)]. (6)

We may summarize the above considerations by conjecturing
that, for all strongly correlated systems which have Q -Gaussians
(Q > 1) as attractors in the sense of the central limit theorem
(see [33]), a model-dependent set [q > 1, B(x) > 0, r(lower bound)

q (x) >

0, r(upper bound)
q (x) > 0] might exist such that P (N;n/N < x) gener-

ically satisfies inequalities (6). In our present example, this set
depends on (Q , γ , δ). Typical values of [r(lower bound)

q (x),

r(upper bound)
q (x)] are illustrated in Fig. 5 and compared with q-gen-

eralized entropic quantities.
Touchette mentions Kaniadakis’ κ-logarithm and κ-exponential

[36] as an alternative to the q-exponential and q-logarithm herein
conjectured. Let us address this point through the definition

lnκ z ≡ zκ − z−κ

2κ
= 1

2

(
lnq z − lnq

1

z

)
(q = 1 + κ). (7)
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(Notice a misprint in the definition of the κ-logarithm appearing in
Touchette’s Comment.) It straightforwardly follows the asymptotic
series

e−rκ N
κ = 1[√

1 + (κrk N)2 + κrk N
]1/κ

= 1

[2κrκ N]1/κ

[
1 − 1

4κ3(rκ N)2

+
∞∑

m=2

(−1)m

× [(m + 1)κ + 1][(m + 2)κ + 1] · · · [(2m − 1)κ + 1]
22mm!κ3m(rκ N)2m

]
.

(8)

The dominant term is a power-law, and at this approximation it is
trivially as admissible as virtually any other power-law. However,
we verify a highly meaningful discrepancy with the q-exponential
function, namely that its subdominant correction is in 1/N2, in-
stead of 1/N . This fact excludes the κ-exponential function as
an adequate one for the present purpose; indeed, it cannot sat-
isfactorily reproduce the results exhibited in Figs. 3 and 4.

A point remains to be discussed. The Lévy–Gnedenko theorem
concerns sums of infinitely many independent (or nearly indepen-
dent, in a specific sense) random variables, whereas the 2008
Q -central limit theorem [33] concerns sums of infinitely many
strongly correlated variables within a specific class. The first case
corresponds to divergent standard variance, whereas the second
one concerns finite Q̄ -variance ( Q̄ = 2Q − 1; see details in [33]).
The attractors for the former case are Lévy distributions, whereas
those for the latter are Q -Gaussians. Both classes have long tails.
For the Lévy distributions, the decay is slower than 1/|x|3 and
faster than 1/|x|; for the q-Gaussians, any power law faster than
1/|x| is admissible. It is known that they have this and other rel-
evant differences. They always differ excepting for an unique case,
which happens to be precisely the case focused on by Touchette,
i.e. Q = 2, namely the Cauchy–Lorentz distribution (named after
Cauchy by mathematicians, and after Lorentz by physicists). They
can be simply thought as having r1(x) = 0, which, as acknowledged
by Touchette, is not particularly enlightening. But they can be also
thought in a much more interesting way, namely as having r2(x)
different from zero, which neatly illustrates the usefulness of the
approach adopted in [2]. In fact, it is well known that Q = 2 is
a highly peculiar case within the interval 1 < Q < 3. For example,
the anomalous diffusion coefficient in the nonlinear Fokker–Planck
equation known as the Porous Medium Equation and discussed
in [18] changes its sign precisely at Q = 2 (see also [19]). The
fact that, for Q = 2, r1 = 0 whereas rq �= 0 is totally analogous to
a variety of dissipative one-dimensional maps whose Lyapunov ex-
ponent vanishes at the edge of chaos. In such cases, the use of the
nonadditive entropy Sq instead of the BG one makes the discussion
much richer since it enables a simple quantitative characterization
of the nonlinear dynamical behavior (by generalizing the standard
exponential sensitivity to the initial conditions when the maximal
Lyapunov exponent is strictly positive to the q-exponential form
at the edge of chaos, when the maximal Lyapunov exponent van-
ishes). This has been verified both analytically and numerically in
very many cases [12].

Let us conclude by saying that point (i) of the present Abstract
is agreeably discussed in Touchette’s Comment, but a neat analy-
sis of the important points (ii) and (iii) is notoriously absent in his
paper. In other words, the q-exponential ansatz proposed in [2]
for (asymptotically) generalizing the standard LDT remains (either

exactly or approximatively: see the quantity (2), expected to be fi-
nite, and the inequalities (6)) as a very strong candidate for a wide
class of systems whose elements are strongly correlated. This fact
may be seen as a strong indication that, consistently with other
results available in the literature (see [4–6,8,14,32]), the total en-
tropy remains extensive (i.e., thermodynamically admissible) even
in nonstandard cases where the BG entropy fails to be extensive.
Any analytical results along these or similar lines would obviously
be highly interesting and welcome.
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