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Abstract
Atomic nuclei appearing in cosmic rays (CRs) are typically classified as primary or secondary.
However, a better understanding of their origin and propagation properties is still necessary. We
analyse the flux of primary (He, C, O) and secondary nuclei (Li, Be, B) detected with rigidity
(momentum/charge) between 2 GV and 3 TV by the alpha magnetic spectrometer on the
International Space Station. We show that q-exponential distribution functions, as motivated by
generalized versions of statistical mechanics with temperature fluctuations, provide excellent fits
for the measured flux of all nuclei considered. Primary and secondary fluxes reveal a universal
dependence on kinetic energy per nucleon for which the underlying energy distribution functions
are solely distinguished by their effective degrees of freedom. All given spectra are characterized by
a universal mean temperature parameter ∼200 MeV which agrees with the Hagedorn temperature.
Our analysis suggests that QCD scattering processes together with nonequilibrium temperature
fluctuations imprint universally onto the measured CR spectra, and produce a similar shape of
energy spectra as high energy collider experiments on the Earth.

1. Introduction

A fundamental challenge of current cosmic ray (CR) research is to understand the origin of highly energetic
CRs, their abundance in terms of different particle types, and to identify the processes at work for
acceleration and propagation. Collectively these processes determine the energy dependent flux of CRs, that
is their energy spectra. Because charged particles gyrate around the magnetic field lines of the interstellar
medium (ISM), the directional information about the source is ultimately lost, leading to a roughly
isotropic distribution observed here at Earth. The atomic nuclei among the CRs are classified as primary
CRs, usually thought to be expelled by supernovae explosions and accelerated in shock fronts of supernova
remnants, and secondary CRs, which result from particle collisions in the ISM. Here, we consider the flux of
six different nuclei, namely the primaries He, C, O and the secondaries Li, Be, B as observed with the alpha
magnetic spectrometer (AMS) on the International Space Station [1, 2].

It is commonly accepted that the major fraction of He, C, O can be classified as primary CRs whereas Li,
Be, B are secondary CRs because their relative abundance exceeds the chemical composition of the ISM by a
few orders of magnitude [3]. Some progress has been made in explaining CR acceleration (e.g. at supernova
remnant shocks) [4] and propagation (e.g. diffusion confinement) [5] which allows to better investigate the
specific processes responsible for the observed distributions. Nevertheless, considering the multitude of
physical processes involved, our understanding remains incomplete and theoretical models accounting for
the given nuclei spectra contain many unknown parameters and are currently under debate [6].

As measured CR energy spectra decay in good approximation with a power law over many orders of
magnitudes, it is reasonable to apply a generalized statistical mechanics formalism (GSM) [7] which
generates power laws rather than exponential distributions as the relevant effective canonical distributions.
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Canonical Boltzmann–Gibbs (BG) statistics is only valid in an equilibrium context for systems with
short-range interactions, but it can be generalized to a nonequilibrium context by introducing an entropic
index q, where q > 1 accounts for heavy-tailed statistics and q = 1 recovers BG statistics [8–10]. The
occurrence of the index q can be naturally understood due to the fact that there are spatio-temporal
temperature fluctuations in a general nonequilibrium situation, as addressed by the general concept of
superstatistics, a by now standard statistical physics method [11]. Since the flux distribution as a function of
energy in CRs evidently does not decay exponentially, it is reasonable not to use BG statistics but rather
GSM, which has been successfully applied to CRs before in [12–14] and also applied to particle collisions in
LHC experiments [15–17]. Other applications of this superstatistical nonequilibrium approach are
Lagrangian [18] and defect turbulence [19], fluctuations in wind velocity and its persistence statistics
[20, 21], fluctuations in the power grid frequency [22, 23] and air pollution statistics [24].

Here, we apply GSM and superstatistical methods to the observed CR flux of atomic nuclei to infer the
physical parameters of the underlying energy distributions, which turn out to be nearly identical for all
primaries and secondaries, respectively. The universal properties of the two CR types can be distinguished
by a single parameter, the entropic index q, which we relate to the effective degrees of freedom of
temperature fluctuations that are relevant in a GSM description. The average temperature parameter that
fits all nuclei spectra turns out to be universal as well and is given by about 200 MeV, coinciding with the
Hagedorn temperature. This suggests that QCD scattering processes play a dominant role in shaping
the spectrum of observed CRs. The spectra are indeed similar to observed momentum spectra in high
energy proton–proton-collider experiments on the Earth, which are known to generate q-exponential
power laws [15, 17].

The paper is organized as follows: in section 2 we demonstrate that CR nuclei spectra, as measured by
AMS, are well described by q-exponential distribution functions. We show that the spectra exhibit data
collapse if they are related to the kinetic energy per nucleon. In section 3 we interpret the observed spectra
in terms of temperature fluctuations occurring during the production process of the CRs, based on χ2

superstatistics. We relate the power law spectral index to the relevant degrees of freedom contributing to the
temperature fluctuations. Finally, a possible physical explanation of the universal properties of the observed
spectra is given in section 4.

2. Results

We investigate the CR flux, given as differential intensity with respect to kinetic energy per nucleon, defined
as E = (Etotal − m)/ A, with total energy Etotal =

√
p2 + m2, momentum p = |⃗p|, rest mass m = Au, mass

number A, atomic mass unit u = 0.931 GeV and [m] = [p] = [GeV] in c = 1 convention.
In order to infer physical parameters from the energy distribution fit to the observed CR flux, we

employ an established GSM model [13], modified slightly by replacing the total energy by the kinetic energy
per nucleon E. This choice of variable is common practice in CR literature because the kinetic energy per
nucleon and the charge to mass ratio of a given particle provides the essential properties that decide how
the particle’s trajectory will be modified by the presence of magnetic field lines. In the appendix we
rigorously derive the distribution function

PE(E) = Cρ(E)e−bE
q , (1)

which corresponds to the following differential intensity of flux

JE(E) = v(E)PE, (2)

where C, q > 1 and T = b−1 > 0 are free parameters and the q-exponential is defined as ex
q ≡

(
1 + (1 − q)x

) 1
1−q which implies ex

q→1 = ex. ρ(E) is a phase space factor which describes the density of

states, i.e. how many energy states can be taken on in a given range. For our fits we used ρ(E) = p2 dp
dE =

(E + u)
√

E(E + 2u) which leads to the flux derived from our superstatistical model

Jmod
E (E) = CE(E + 2u)eq(−bE), (3)

which we compare to the observed flux Jobs
E .

The entropic index q determines the high-energy (i.e. the tail) behaviour of the distribution since the
q-exponential asymptotically approaches a power law

lim
E→∞

e−bE
q ∝Eγ , (4)
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Figure 1. The particle flux of each CR species was fitted with (3) using three parameters C, T, q. The vertical axis in this log–log
plot was multiplied with E2.7 for better visibility. The fit’s accuracy can be quantified by the deviation from modelled Jmod to
observed flux Jobs weighted by the respective measurement error σ. Evidently, almost all data points fall within the uncertainty
range of ± σ illustrated as grey shaded area. The mean temperature T0 is defined by (9). The amplitude C has dimensions
[C] = [m−2 sr−1 s−1GeV−3].

with spectral index γ = 2 − 1/ (q − 1) for q > 1. The parameter T = b−1 represents a temperature in
energy units that constrains the low-energy regime of maximum flux. Since our analysis focuses on the
spectral shape of the energy distribution we collect all global factors, which do not depend explicitly on the
energy, in the amplitude C, which is merely a gauge for the absolute magnitude of the flux.

Figure 1 illustrates that most data points are fitted by our model within a single standard deviation for
all six nuclei. We determined the best fit by applying χ2 minimisation with (Jmod

E − Jobs
E )/ σ, meaning

deviation of model from data weighted by the respective measurement uncertainty, where the standard
deviation σ is the sum of measurement errors for a specific energy bin. For most of the data the error is of
the order of a few percent whereas the uncertainty tends to increase with energy up to the largest
uncertainty of 89 percent associated with the beryllium flux measured in the highest energy bin.

Figure 2 reveals the universal properties of the primary (He, C, O) and secondary (Li, Be, B) CR fluxes
when rescaling each nuclei flux with a suitable global factor such that all data points collapse to a single line
in the low energy range. Fixing the global amplitude parameter to C = 1 and T = 0.240 GeV, which is the
average value for the temperatures inferred from the individual best fits in figure 1, allows us to do a best fit
with q as the only free parameter for the collapsed data of primaries and secondaries. This yields
qprim = 1.2109 (n = 3.5) and qsec = 1.1969 (n = 4.2), where n can be interpreted as degrees of freedom of
temperature fluctuations as outlined below.

3. Interpretation in terms of temperature fluctuations

We consider the observed CR spectra to be the result of many different high energy scattering processes,
each having a different local temperature β−1 in the local scattering volume. This idea was previously

3
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Figure 2. Each particle flux was rescaled with a suitable factor such that the data points (roughly) collapse to a single line at the
low energy end and the universal properties of primary and secondary CR nuclei spectra become visible. For larger energies the
spectrum splits into primaries and secondaries which can be distinguished by a single parameter, the entropic index q which can
be interpreted by the underlying effective degrees of freedom.

worked out in detail for collider experiments using LHC data, e.g. in [15]. There are strong fluctuations of
temperature in each scattering event, which can be described by superstatistics [11], a standard method
in the theory of complex systems. For CRs, we need to generate asymptotic power laws and this can be
achieved by so-called χ2 superstatistics. As is generally known (see, e.g. [13]) the probability density
function for a fluctuating β of the form

β =
n∑

i=1

X2
i (5)

with independent and identically distributed Gaussian random variables Xi is a χ2 distribution given by

g(β) =
1

Γ(n/ 2)

(
n

2β0

)n
2

β
n
2 −1 exp

(
− nβ

2β0

)
. (6)

It is well-known in the formalism of superstatistics that superimposing various subsystems with
different temperature weighted with g(β) leads to q-exponential statistics. For each scattering event we
apply ordinary statistical mechanics locally, i.e. the conditional probability density of a kinetic energy state E
in a given scattering event for a given temperature is

pE(E|β) =
1

Z(β)
ρ(E)e−βE. (7)

In order to normalize our conditional distribution function we need to integrate over all possible energy
states, obtaining the normalization constant Z(β) =

∫∞
0 ρ(E)e−βEdE. The marginal distribution PE(E) (the

unconditioned distribution of energies) can be computed by integrating the conditional distribution
pE(E|β) over all inverse temperatures β weighted with g(β). In the relativistic limit (neglecting mass terms)
this yields

PE(E) =

∫ ∞

0
g(β)pE(E|β)dβ ∼ ρ(E)e−bE

q (8)

with b = β0/ (4 − 3q) and mean inverse temperature

β0 =

∫ ∞

0
βg(β)dβ :=

1
T0

. (9)

4
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The effective degrees of freedom n are related to the entropic index q via

n =
2

q − 1
− 6. (10)

Considering the physical meaning of the random variable Xi defined in equation (5) there are different
possible interpretations, see [13, 18, 25, 26] for details. The main conclusions in our given analysis are
independent of the particular interpretation chosen but it is worth emphasizing that it is physically plausible
to understand Xi as a measure for the fluctuating effective energy dissipation, with n = 3 representing the
three spatial degrees of freedom as minimum value, which is increased to n = 4 when including variations
in time.

In the appendix we provide a more detailed derivation of the above results, which show that
q-exponential statistics follows naturally from summing up ordinary Boltzmann distributions with
χ2-distributed inverse temperatures.

4. Physical interpretation and possible reason for universality

For the temperature parameter T0 = β−1
0 , defined in (9), we get the value T0 ∼ 600 MeV for each of the six

CR species in our fits. Hence, the average effective temperature per quark is of the order T0/ 3 ∼ 200 MeV,
i.e. we recover approximately the observed value of the Hagedorn temperature which is roughly known to
be in the range 140 to 200 MeV [27–29] and represents a universal critical temperature for the quark gluon
plasma and for high energy QCD scattering processes. Remarkably, the fitted value of T0/ 3 in the fits is
observed to be the same for all six nuclei, i.e. for both primary and secondary CRs within a range of about
one tenth of its absolute value.

Let us provide some arguments on why we consider T0/ 3 as a relevant temperature parameter. In
general, there are two alternative formulations of superstatistics, defined as type A and type B in [11], which
yield the same form of distribution functions but differ in their definitions for T0 because type A uses the
unnormalized whereas type B uses the normalized Boltzmann factor for deriving the generalized canonical
distribution, as we present in detail for type B in the appendix. We consider type B superstatistics as
physically more plausible because we understand the generalized canonical distribution as originating from
a superposition of many CR ensembles associated with a normalized canonical distribution respectively.
Since the Hagedorn temperature is associated with the kinetic energy of particles interacting via the strong
nuclear force, we divide the average temperature T0 by the number of quarks, namely three for atomic
nuclei. For a quark–gluon plasma one can either define a temperature for single quarks, or—after
hadronization—for mesonic or baryonic states. At the critical Hagedorn phase transition point, where both
states exist, this is mainly a question of definition [30].

The emergence of the Hagedorn temperature (at least as an order of magnitude) in our fits suggests that
CR energy spectra might originate from high energy scattering processes taking place at the Hagedorn
temperature TH. Very young neutron stars, initially formed in a supernova explosion, indeed have a
temperature ∼1012 K to 100 MeV of comparable order of magnitude as the Hagedorn temperature [31]. As
the Hagedorn temperature is universal, so is the average kinetic energy per quark of the CRs nuclei,
assuming they are produced in a Hagedorn fireball, either during the original supernova explosion, or later
in collision processes of highly energetic CR particles with the ISM.

Our observation that the kinetic energy per nucleon (or per quark) yields universal behaviour of the
spectra is indeed pointing towards QCD processes as the dominant contribution that shapes the spectra (see
also [14]): were there mainly electromagnetic processes underlying the spectra, one would expect invariance
under rescaling with Z, but we observe invariance (universality) under rescaling with A. At the LHC one
observes similar q-exponentials for the measured transverse momentum spectra, as generated by QCD
scattering processes, with a temperature parameter b−1 that is of similar order of magnitude (150 MeV) as
in our fits for the CRs, see table 4 in [17]. That paper also shows that hard parton QCD scattering leads to
power law spectral behaviour.

Note that while the entire energy spectrum in figure 1 is well fitted by a q-exponential, the residuals tend
to oscillate. A similar oscillatory behaviour of the residuals (logarithmically depending on the energy) has
been observed in the transverse momentum distribution for high energy pp collision experiments at the
LHC [17, 32]. The similarity of these log-periodic oscillations for our CR data and for collider experiments
on the Earth is indeed striking, and once again supports our point that both phenomena could have similar
roots based on high energy scattering processes.

After having analysed the average temperature, let us now concentrate on the fluctuations of temperature
in the individual scattering events, described by the parameter n, which determines the entropic index q and

5
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thereby the tail behaviour. One readily notices that in our GSM model the marginal distributions PE(E)
decay asymptotically as

PE(E) ∼ E−1− n
2 . (11)

In order to calculate the expectation of the fluctuating energy E,

⟨E⟩ =

∫ ∞

0
EPE(E)dE, (12)

one notices that the integrand decays as EP(E) ∼ E−n/ 2. Thus the expectation value is only well defined if
n > 2.

In the absence of further effects, like an energy dependent cross section, we could explain n exclusively
by the underlying statistics and thus associate n with the number of Gaussian random variables
contributing to the fluctuating β in equation (5). Since for CR propagation energy dependent processes
affect the spectral shape the derived value for n will represent both the statistical properties and the energy
dependent processes. For this reason effective non-integer values for n are possible. Because the above
argument about the existence of the expectation value should apply more generally, and thus even in the
absence of additional spectral modifications, we conclude that n = 3 is the minimum value for the degrees
of freedom.

A similar argument applies if one looks at the existence of the mean of the temperature β−1 as formed
with the probability density g(β)

⟨β−1⟩ =

∫ ∞

0
β−1g(β)dβ. (13)

The above mean only exists for n > 2, since the integrand behaves as β
n
2 −2 for β → 0. We are thus naturally

led to the minimum value n = 3 as the strongest fluctuation state of the Hagedorn fireball for which a mean
energy ⟨E⟩ and a mean temperature ⟨β−1⟩ is well-defined.

For secondary CRs, there is an additional degree of freedom as an additional collision process at a later
time is needed to produce secondary CRs. Thus it is plausible that for secondary CRs n is larger than the
minimum value n = 3. The next higher value of n, which can be regarded as an excited state of temperature
fluctuations, n = 4, corresponds to q = 1.2000. Indeed, based on our fits (see figure 1), secondary CRs are
well approximated by this q and therefore n = 4.

In the experimental data detected by AMS, it is to be expected that we will not observe the exact values
of q = 1.2222 and q = 1.2000 since the spectra are modified by diffusion processes in the galaxy, by energy
dependent escape processes from the shock front of the accelerating supernova remnant, and by radiative
losses from acceleration. All these effects can alter the spectrum and lead to small changes in the optimum
fitting parameters q and T. We think this is the reason why the best fits of the observed spectra correspond
to n = 3.5 rather than n = 3, and n = 4.2 rather than n = 4, equivalent to minor negative corrections for
the spectral index γ of the order ∆γ ≈ −0.1. Also, the effective temperature T may be increased by
diffusion processes in the galaxy, which will broaden the distributions. However, it seems these effects
are only small perturbations that slightly modify the universal parameters set by the QCD scattering
processes.

While the connection of QCD and GSM was emphasized in [17], the model that we implement in our
paper is mainly based on a nonequilibrium statistical mechanics approach, as originally introduced in [13].
This approach is based on temperature fluctuations in each (small) interaction volume, where the scattering
event takes place. These local temperature fluctuations are at the root of the observed q-exponentials and
the associated temperature scale turns out to coincide approximately with the Hagedorn temperature
known from QCD. Other authors [33] have emphasized the fractal and hierarchical structure of scattering
events and hadronization cascades, or the complexity of long-range interactions in the hadronization
process [30, 34] coming to similar conclusions.

5. Discussion on relevance of solar wind modulation

The AMS measurements were taken at about 400 km above Earth’s surface and are thus subject to solar
wind modulation which yields a suppressed flux compared to outside the heliosphere, in particular for
charged particles with kinetic energies per nucleon below !10 GeV [38]. Thus for our given AMS data with
kinetic energies per nucleon in the range of 0.4 GeV ! E ! 1.2 TeV we would like to quantify the effect of
solar wind modulation on our given spectra. Using CR propagation models allows to infer the unmodulated
flux before CRs are entering the heliosphere, that is the LIS flux.

6
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Figure 3. Superstatistical results are robust when correcting for heliospheric impact. Using CR propagation models HelMod and
Galprop allows [35–37] to estimate flux outside the heliosphere, that is unmodulated by solar wind representing the local
interstellar spectra, in short local interstellar (LIS) flux. Here, we use the data published in [35–37] which we investigate for the

given AMS energy bins. We apply Jmod
E (E) = CE(E + 2u)eq(−bE) with ex

q ≡
(

1 + (1 − q)x
) 1

1−q in order to derive the best fit
global amplitude C, temperature T and entropic index q. From the best fit parameter T we derive the average temperature per
quark as T0/ 3. The entropic index q can be translated into effective degrees of freedom n and into the spectral index γ
representing the asymptotic power law behaviour limE→∞ e−bE

q ∝Eγ .

This was recently done by [35–37] who combined the two CR propagation models HelMod and
Galprop and published the calculated flux for all our given atomic nuclei and for the entire energy range
covered by AMS. We use their data and interpolate it to match the AMS energy bins definition. We find a
maximum deviation of LIS to flux inside heliosphere (AMS) for the lowest energetic particles with
LIS/ AMS ! 4 for E = 0.4 GeV. The two spectra converge for larger energies quickly and we find
LIS/ AMS ! 1.2 for E = 10 GeV such that in fact only the lowest energy range of our spectra is significantly
affected. Since the propagation model provides the flux without giving any uncertainty, we assign each
estimated flux the same relative error as in the AMS data set. This makes the comparison between the flux
inside and outside the heliosphere consistent and allows to put appropriate weight on measurements with
smaller uncertainties for our least-square optimization.

Analogously to the steps performed for the given AMS data, we apply our GSM methodology to the LIS
data and present the resulting fits and parameters in figure 3. The average temperatures T0/ 3 for the
different nuclei are about 50 to 80 MeV lower than for the AMS data, namely in the range 129 to 152 MeV.
Still, these temperatures are all about the scale of the Hagedorn temperature and in fact coincide with the
temperature range 130 to 160 MeV inferred by GSM methods applied to LHC experiments found by
[17, 32]. The effective degrees of freedom remain approximately the same. Since the reliability of our
methodology ultimately depends on having a large energy range measured for all the different nuclei, the
AMS data is the best currently available experimental data set. In contrast, measurements acquired by
Voyager outside the heliosphere only cover energies from about 3 MeV to a few hundred MeV [39, 40].
Hence, we apply our analysis to the large range of AMS-measured data and estimate the modulation
by the solar wind, rather than using theoretically derived data for unmodulated spectra.

7
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6. Conclusion

We provide excellent fits for the measured AMS spectra of primary (He, C, O) and secondary CRs
(Li, Be, B) using a simple superstatistical model. The observed q-exponential spectra are interpreted in
terms of temperature fluctuations occurring in the Hagedorn fireball during the production process of CRs
in their individual scattering events. We provide evidence that the observed spectra of CR nuclei share
universal properties: the spectra collapse if the kinetic energy per nucleon is taken as the relevant variable.
Primary and secondary CRs can be uniquely distinguished by their respective entropic index q,
corresponding to different degrees of freedom associated with the temperature fluctuations. They share the
same average temperature parameter, whose order of magnitude coincides with the Hagedorn
temperature.
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Appendix A. Deriving the superstatistical distribution function

We derive the distribution function (1), that is PE = Cρ(E)e−bE
q , using the framework of superstatistics by

which we can interpret the best fit parameters with a temperature T = b−1 and effective degrees of
freedom n.

Superstatistics [11] is a generalization of Boltzmann statistics in the sense that the distribution function
can be derived by integrating the conditional probability distribution pE(E|β) = ρ(E)e−βE/ Z(β) for all given
values of inverse temperature β. The normalization is calculated by summing over all possible energy states,
yielding Z(β) =

∫∞
0 ρ(E)e−βEdE. In agreement with [13] we apply the ultra-relativistic approximation for

the density of states ρ(E) ∼ E2 in order to calculate Z(β) ∼ β−3. Given the χ2-distributed β, defined by (6),
we calculate the generalized canonical distribution as follows:

PE(E) =

∫ ∞

0
g(β)pE(E|β)dβ (A.1)

∼
(

n
2β0

)n
2

ρ(E)
∫ ∞

0
β

n
2 +2 e−β

(
E+ n

2β0

)

dβ (A.2)

∼ ρ(E)

(
n

2β0

)n
2
(

E +
n

2β0

)−3− n
2

. (A.3)

Introducing q = 1 + 2/ (n + 6) (equivalent to n/ 2 = 1/ (q − 1) − 3) and b = β0/ (4 − 3q), allows us to
express the result as:

PE(E) ∼ ρ(E)

(
E +

n
2β0

)−3
(

n
2β0

E + n
2β0

) 1
q−1 −3

(A.4)

∼ ρ(E)

(
n

2β0

)−3
(

1

1 + E 2β0
n

) 1
q−1

(A.5)

∼ ρ(E)e−bE
q . (A.6)

Thus we have derived the distribution function (1), which we used for our fits, building on the
framework of GSM and superstatistics.

Note that the above equations are only valid for the particular case ρ(E) ∼ E2 and g(β) being a χ2

distribution. More generally, one has

PE(E) ∼ ρ(E)
∫ ∞

0

g(β)
Z(β)

e−βEdβ. (A.7)
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Appendix B. Applying theory to observation

We provide a thorough derivation of equation (2), that is JE = v(E)PE, which relates the distribution
function from our superstatistical model with the observed differential flux intensity measured by AMS.

The AMS data [1, 2] was published in bins of rigidity R = pc/ Ze with atomic number Z, electric
charge e, momentum p = |⃗p|, [R] = [V] and the corresponding flux measured in units [J(R)] =
[m−2 sr−1 s−1 GV−1]. Instead of rigidity we have chosen to investigate the spectrum in respect to kinetic
energy per nucleon. To convert the flux dependence from rigidity R to kinetic energy per nucleon E, we
need to transform the flux JR(R) → JE(E) such that JR(R)dR = JE(E)dE is conserved. This is a simple
transformation of variables and yields

JE(E) =
A
Ze

E + u√
E(E + 2u)

JR(R), (B.1)

with [JE(E)] = [m−2 sr−1 s−1 GeV−1]. For better visibility of the accuracy of our fits, we multiplied the flux
with E2.7, such that the units for the flux in the presented plots are [GeV1.7 m−2 sr−1 s−1]. For the atomic
number A we refer to AMS [1, 2] who inferred the following average abundance of isotopes 4He, 12C, 16O,
6.5Li, 8Be and 10.7Be among the detected nuclei. The measured flux J represents a differential intensity. Thus
it counts the number of particles with energy E (or rigidity R) coming from a unit solid angle that pass
through a unit surface per unit of time.

Our superstatistical model builds on a distribution function, denoted as P, which counts the spatial
density of particles within a given momentum/energy range as

dN

d3x
∼ PE(E)dE ∼ Pp(E)d3p. (B.2)

Analogously to PE(E) ∼ ρ(E)e−bE
q in the previous section one can derive that Pp(E) ∼ e−bE

q . Thus the density

of states ρ(E) can be calculated from the conservation condition (B.2). Using E = (
√

p2 + m2 − m)/ A,
which implies that the energy depends only on the magnitude of the momentum, simplifies d3p = 4πp2dp,
and therefore

PE(E) ∼ ρ(E)e−bE
q ∼ p2 dp

dE
e−bE

q . (B.3)

Calculating the derivative and using p2 = A2E(E + 2u) we find

ρ(E) ∼ (E + u)
√

E(E + 2u). (B.4)

Note that we generally neglect constant global factors in our equations because we are focussing on the
shape of the spectrum rather than its absolute magnitude. Evidently, [p2Pp] = [PE] = [eV−1 m−3]
does not have the same dimension as the detected flux, given as differential intensity J with [J] =
[eV−1 m−2 s−1 sr−1]. This reminds us that in order to derive the associated differential intensity from a
distribution function we have to account for the rate at which particles go through the detector. That is we
multiply with the particle’s velocity to obtain the flux JE, corresponding to the distribution function PE,
which yields

Jmod
E (E) ∼ v(E)PE(E) ∼ v(E)ρ(E)e−bE

q . (B.5)

[41] provides a detailed overview about the different ways to count particles including this relation.
Evidently, it yields the desired physical dimensions since [vPE] = [eV m−2 s−1].

In order to express the velocity in terms of E we use p = γmv with γ = 1√
1−v

(in c = 1 convention),

p = A
√

E(E + 2u) and m = Au to find

v(E) =

√
E(E + 2u)
(E + u)

. (B.6)

Plugging everything into (B.5) reveals the relation between q-exponential distribution function and the
observed differential intensity

Jmod
E (E) = CE(E + 2u)e−bE

q (B.7)

which recovers the function we fitted to the data (3).

9



New J. Phys. 22 (2020) 093002 M Smolla et al

References

[1] Aguilar M et al 2017 Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha
magnetic spectrometer on the international space station Phys. Rev. Lett. 119 251101

[2] Aguilar M et al 2018 Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha
magnetic spectrometer on the International Space Station Phys. Rev. Lett. 120 021101

[3] Gaisser T K, Engel R and Resconi E 2016 Cosmic Rays and Particle Physics (Cambridge: Cambridge University Press)
[4] Tatischeff V and Gabici S 2018 Particle acceleration by supernova shocks and spallogenic nucleosynthesis of light elements Annu.

Rev. Nucl. Part. Sci. 68 377–404
[5] Strong A W, Moskalenko I V and Ptuskin V S 2007 Cosmic-ray propagation and interactions in the galaxy Annu. Rev. Nucl. Part.

Sci. 57 285–327
[6] Gabici S, Evoli C, Gaggero D, Lipari P, Mertsch P, Orlando E, Strong A and Vittino A 2019 The origin of galactic cosmic rays:

challenges to the standard paradigm Int. J. Mod. Phys. D 28 1930022
[7] Wilk G and Włodarczyk Z 2010 Nonextensive thermal sources of cosmic rays Cent. Eur. J. Phys. 8 726–36
[8] Tsallis C 2009 Introduction to Nonextensive Statistical Mechanics (Berlin: Springer)
[9] Beck C 2009 Generalized information and entropy measures in physics Contemp. Phys. 50 495

[10] Jizba P and Korbel J 2019 Maximum entropy principle in statistical inference: case for non-Shannonian entropies Phys. Rev. Lett.
122 120601

[11] Beck C and Cohen E G D 2003 Superstatistics Physica A 322 267–75
[12] Tsallis C, Anjos J C and Borges E P 2003 Fluxes of cosmic rays: a delicately balanced stationary state Phys. Lett. A 310 372
[13] Beck C 2004 Generalized statistical mechanics of cosmic rays Physica A 331 173–81
[14] Cigdem Yalcin G and Beck C 2018 Generalized statistical mechanics of cosmic rays: application to positron-electron spectral

indices Sci. Rep. 8 1764
[15] Beck C 2009 Superstatistics in high-energy physics Eur. Phys. J A 40 267
[16] Marques L, Andrade E II and Deppman A 2013 Nonextensivity of hadronic systems Phys. Rev. D 87 114022
[17] Wong C-Y, Wilk G, Cirto L J L and Tsallis C 2015 From qcd-based hard-scattering to nonextensive statistical mechanical

descriptions of transverse momentum spectra in high-energy pp and ppcollisions Phys. Rev. D 91 114027
[18] Beck C 2007 Statistics of three-dimensional lagrangian turbulence Phys. Rev. Lett. 98 064502
[19] Daniels K E, Beck C and Bodenschatz E 2004 Defect turbulence and generalized statistical mechanics Physica D 193 208–17
[20] Rizzo S and Rapisarda A 2004 Environmental atmospheric turbulence at florence airport AIP Conf. Proc. 742 176–81
[21] Weber J, Reyers M, Beck C, Timme M, Pinto J G, Witthaut D and Schäfer B 2019 Wind power persistence is characterized by
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