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ABSTRACT

In the realm of Boltzmann–Gibbs statistical mechanics, there are three well known isomorphic connections with random geometry, namely,
(i) the Kasteleyn–Fortuin theorem, which connects the λ → 1 limit of the λ-state Potts ferromagnet with bond percolation, (ii) the isomor-
phism, which connects the λ → 0 limit of the λ-state Potts ferromagnet with random resistor networks, and (iii) the de Gennes isomorphism,
which connects the n → 0 limit of the n-vector ferromagnet with self-avoiding random walk in linear polymers. We provide here strong

numerical evidence that a similar isomorphism appears to emerge connecting the energy q-exponential distribution ∝ e
−βqε
q (with q = 4/3

and βqω0 = 10/3) optimizing, under simple constraints, the nonadditive entropy Sq with a specific geographic growth random model based
on preferential attachment through exponentially distributed weighted links, ω0 being the characteristic weight.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090864

Several examples exist of isomorphism between specific mod-
els in the realm of Boltzmann–Gibbs statistical mechanics with
random geometry models. Such examples include the Kaste-
leyn–Fortuin theorem related to bond percolation, the zero-state
limit of the Potts ferromagnet related to random resistor net-
works, and the de Gennes isomorphism of the zero-component
limit of the n-vector model with self-avoiding random walk. We
present here strong numerical evidence that the same happens
in the realm of nonextensive statistical mechanics. Indeed, the
energy distribution associated with a geographical d-dimensional
preferential-attachment-based (asymptotically) scale-free growth
model is given by a simple q-exponential with q = 4/3.

I. INTRODUCTION

Within Boltzmann–Gibbs (BG) statistical mechanics, the
energy distribution of a Hamiltonian system in thermal equilibrium

at temperature T is given by the following matrix density ρ:1,2

ρ(H ) =
e−βH

Z(β)
, (1)

where β ≡ 1/kT and the partition function is defined as Z(β)
≡ Tr e−βH , H being the Hamiltonian. In their diagonalized
version, these quantities become

p(Ei) =
e−βEi

Z(β)
, (2)

where Z(β) ≡
∑

i e−βEi , Ei being the ith eigenvalue of the Hamilto-
nian H .

Occasionally, there are models whose BG thermostatistical
approach is isomorphic to random geometrical models. Let us men-
tion three well known such examples: (i) The Kasteleyn–Fortuin
theorem,3 which connects bond percolation in an arbitrary graph
or lattice with the λ → 1 limit of the λ-state Potts ferromagnetic
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model in the same graph (see Ref. 4 and references therein). (ii)
The random resistor (or impedance) network, which connects the
Ohmic behavior of an arbitrary resistor graph with the λ → 0 limit
of the just mentioned λ-state Potts ferromagnetic model in the same
graph (see Refs. 4 and 5 and references therein). (iii) The de Gennes
isomorphism6,7 which connects self-avoiding random walk on an
arbitrary graph (equivalently the growth configurations of a linear
polymer) with the n → 0 limit of the n-vector ferromagnet on the
same graph. We briefly review these three isomorphisms in Sec. II.

In the present paper (Sec. III), we describe and numeri-
cally study a random geometrical model, namely, the growth of
an asymptotically scale-free geographic weighted-link preferential-
attachment network. Its numerical study provides a strong indica-
tion of being isomorphic to a simple thermostatistical model within
nonextensive statistical mechanics.8–10

II. ISOMORPHIC MODELS WITHIN THE BG
STATISTICAL MECHANICS

We briefly review here three well known examples of isomor-
phism between models within BG thermostatistics and nontrivial
random geometrical models. We refer to the λ → 1 and λ → 0
limits of the λ-state Potts ferromagnet and the n → 0 limit of the
n-vector ferromagnet.

A. The Potts ferromagnet

The Hamiltonian of the λ-state Potts ferromagnetic model11 is
defined as follows:

H = −λ
∑

i,j

Jijδσi ,σj (σi = 1, 2, . . . , λ, ∀i), (3)

where Ji,j > 0, ∀(i, j), and the sum runs over all pairs of “spins”
located at the sites of an arbitrary lattice (finite or infinite, regular
or not, translationally invariant, i.e., Bravais lattice, scale invariant,
i.e., fractal lattice, etc.) and δσi ,σj is Kronecker’s delta. The particu-
lar case λ = 2 is (through a trivial energy shift in the Hamiltonian)
identical to the standard spin 1/2 Ising model. The elementary Potts
interaction (single bond) yields a two-level spectrum: one level with
energy −λJij and degeneracy λ and the other one with energy 0 and
degeneracy λ(λ − 1). To every single bond between sites i and j, we
may associate its thermal transmissivity (see Ref. 4 and references
therein),

tij ≡
1 − e−λJij/kT

1 + (λ − 1)e−λJij/kT
∈ [0, 1]. (4)

Let us first consider a series array of two bonds or links (with Potts
coupling constants J1 and J2) and three vertices or sites. The trans-
missivity after tracing over the λ states of the internal site is given
by

ts = t1t2 (series). (5)

If we have instead a parallel array of two bonds (again with Potts
coupling constants J1 and J2), the resulting coupling constant is

given by J1 + J2, which straightforwardly leads to

tp =
t1 + t2 + (λ − 2)t1t2

1 + (λ − 1)t1t2

(parallel) (6)

(or, equivalently,
1−tp

1+(λ−1)tp
= 1−t1

1+(λ−1)t1

1−t2
1+(λ−1)t2

). If we have two-

open-site arrays that are not reducible to sequences of series and
parallel operations (e.g., the Wheatstone bridge), we may use the
break-collapse method (see Ref. 4 and references therein) to calcu-
late the equivalent transmissivity.

1. The λ →1 limit

If we consider the analytic λ → 1 limit, Eq. (5) remains as it
stands, whereas Eq. (6) becomes

tp = t1 + t2 − t1t2 (parallel) (7)

[or, equivalently, (1 − tp) = (1 − t1)(1 − t2)]. We notice that
Eqs. (5) and (7) are precisely the composition laws of independent
probabilities. This is the basis of the Kasteleyn–Fortuin theorem,3

which rigorously establishes the isomorphism of the λ → 1 Potts
ferromagnet in an arbitrary lattice with bond percolation in the same
lattice.

2. The λ →0 limit

If we define now

ti ≡ 1 −
g0

gi

, (8)

where g0 is some reference electrical conductance (i.e., the inverse of
a reference electrical resistance), we straightforwardly verify that, in
the g0/gi → 0 limit, Eqs. (5) and (6) become, respectively, (see, for
instance, Ref. 5)

gs =
g1g2

g1 + g2

(series) (9)

(or, equivalently 1
gs

= 1
g1

+ 1
g2

) and

gp = g1 + g2 (parallel). (10)

These composition laws are precisely those of Ohmic conductances.
If we have two-open-site arrays that are not reducible to sequences
of series and parallel operations, we may use once again the break-
collapse method5 to calculate the equivalent conductance. This con-
stitutes the basis of the isomorphism of the λ → 0 Potts ferromagnet
in an arbitrary lattice with random resistors in the same lattice.

B. The n-vector ferromagnet

The Hamiltonian of the n-vector or the O(n) ferromagnetic
model can be defined as follows:12

H = −
∑

ij

Jij s⃗i .⃗sj

= −
∑

ij

Jij

n
∑

k=1

s(k)i s(k)j

(

n
∑

k=1

[s(k)i ]
2
= 1, ∀i

)

, (11)

where Ji,j > 0, ∀(i, j), and the first sum runs over all pairs of spin
located at the sites of an arbitrary lattice (finite or infinite, regular
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or not, translationally invariant, i.e., Bravais lattice, scale invariant,
i.e., fractal lattice, etc.). The particular case n = 1 corresponds to the
Ising model; n = 2 corresponds to the XY model; n = 3 corresponds
to the Heisenberg model; n → ∞ corresponds to the spherical
model. In 1972, de Gennes proved6 that the analytical extension
n → 0 is isomorphic to the growth of a self-avoiding linear poly-
mer in the same lattice. This isomorphism certainly constitutes one
of the landmarks of polymer physics.

III. POSSIBLE ISOMORPHIC MODEL WITHIN
NONEXTENSIVE STATISTICAL MECHANICS

A. The random geometric weighted-link
preferential-attachment growth model

The growing d-dimensional network we focus on here has been
introduced and studied in Ref. 13, which we follow now. We start
with one site at the origin. We then stochastically locate a second site
(and then a third, a fourth, and so on up to N) through a probability
p(r) ∝ 1/rd+αG (αG > 0), where r ≥ 1 is the Euclidean distance from
the newly arrived site to the center of mass of the pre-existing cluster;
αG is the growth parameter and d = 1, 2, 3 is the dimensionality of
the system (large αG yields geographically concentrated networks).

The site i = 1 is then linked to the site j = 2. We sample a
random number wij from a distribution P(w) that will give us the
corresponding link weight. Each site will have a total energy εi that
will depend on how many links it has, noted ki, and the widths {wij}
of those links. At each time step, the site i only has access to its local
energy εi defined as

εi ≡

ki
∑

j=1

wij

2
(wij ≥ 0). (12)

The value of εi will directly affect the probability of the site i to
acquire new links. Indeed, from this step on, the sites i = 3, 4, . . .
will be linked to the previous ones with probability

)ij ∝
εi

dαA
ij

(αA ≥ 0), (13)

where dij is the Euclidean distance between i and j, where j runs over
all sites linked to the site i. The attachment parameter αA controls
the importance of the distance in the preferential attachment rule
(13). When αA ≫ 1, the sites tend to connect to close neighbors,
whereas αA ≃ 0 tends to generate distant connections all over the
network. Notice that, while the network size increases up to N nodes,
the variables ki and εi (number of links and total energy of the i-th
node; i = 1, 2, 3, . . . , N) also increase in time.

If we consider the particular case P(w) = δ(w − 1), where
δ(z) denotes the Dirac delta distribution, Eq. (13) becomes )ij ∝
ki/dαA

ij (αA ≥ 0), thus recovering the usual preferential attachment
rule (see, for instance, Refs. 14 and 15 and references therein).
Note that if we additionally consider the particular case αA = 0, we
recover the standard Barabási–Albert model with )i ∝ ki.16,17

We are considering here the case where w is given by the
following stretched-exponential distribution:

P(w) =
η

w0 +
(

1
η

) e−(w/w0)η (w ≥ 0; w0 > 0; η > 0), (14)

FIG. 1. (a) The ε-dependence of the normalized probability ξ(ε) ≡ p(ε)/p(0)
corresponding to (η,w0,αA, d) = (1, 1, 2, 2) and three typical values of N. The
curves joining the points indicated for each value of N are produced using ξ(ε)
given by Eq. (16) with r = 0.87 and the corresponding values of µr . The dashed

curve corresponds to the conjectured N → ∞ limit ξ(ε) = e
−βqε
q with (q,βq)

= (4/3, 10/3). (b) The N-dependence of µr , where the fitting parameter r has
been chosen so that a straight line emerges in a log–log representation, precisely
corresponding here to µr = 0.426N−0.47.

which satisfies
∫∞

0 dw P(w) = 1. As particular cases of Eq. (14),
we have η = 1, which corresponds to an exponential distribution;
η = 2, which corresponds to a half-Gaussian distribution; and
η → ∞, which corresponds to a uniform distribution within
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FIG. 2. The probability p(ε) as a function of the corresponding histogram
h(ε) for (η,w0) = (1, 1) and typical values of N with αA = d = 1 (a) and
αA = d = 2 (b). Comparison of the histogram h(ε) of site energies with the
nearly q-exponential distribution p(ε). The dashed lines are a guide to the eye.
The bisector straight line corresponds to the conjectured N → ∞ limit, namely,

p(ε) = p(0) e
−βqε
q with (q,βq) = (4/3, 10/3).

w ∈ [0, w0]. Our aim here is to specifically study the η = 1 case; i.e.,
p(w) = w−1

0 e−w/w0 (w ≥ 0; w0 > 0). In Fig. 1, we present numeri-
cal results for αA = d = 2 and increasing values of N. These results
remain, in fact, the same for any (αA, d) values such that 0 ≤ αA/d
≤ 1. This is illustrated in Fig. 2 for αA/d = 1 (d = 1, 2).

B. Finite-size effects

As we verify in both Figs. 1 and 2, there are sensible effects on
p(ε) coming from the finiteness of N, which seemingly disappear in
the N → ∞ limit. Following along the lines of Ref. 18, we check that
these finite-size effects are satisfactorily described by the following
equation:

dξ

dε
= −µrξ

r − (βq − µr)ξ
q (r ≤ q; ε ≥ 0), (15)

where ξ(ε) ≡ p(ε)/pmax ∈ [0, 1]. Consequently,

ε =

∫ 1

ξ

dx

µrxr + (βq − µr)xq

=
1

µr

∫ 1

ξ

dx

{

1

xr
−

(βq/µr − 1)xq−2r)

1 + (βq/µr − 1)xq−r

}

=
1

µr

{

ξ 1−r − 1

r − 1
−

(βq/µr) − 1

1 + q − 2r

×
[

H(1; q − 2r, q − r, (βq/µr) − 1)

−H(ξ ; q − 2r, q − r, (βq/µr) − 1)
]

}

, (16)

with

H(ξ ; a, b, c) ≡ ξ 1+aF

(

1 + a

b
, 1;

1 + a + b

c
; −ξ bc

)

, (17)

where F is the hypergeometric function. We can verify, for instance,
that, for 1 < r < q and 0 < µr ≪ βq, three regions emerge. These
three regions are characterized as follows: for small ε, ξ is nearly
constant; for intermediate ε, ξ decreases as 1/ε1/(q−1); finally, for
large ε, ξ further decreases, now as 1/ε1/(r−1). If r ≤ 1, this function
vanishes even faster for increasing ε (see details in Ref. 18).

IV. CONCLUSION

The present numerical results provide a strong indication that,
in the N → ∞ limit, µr vanishes. Consequently, the differential

equation dξ

dε
= −βqξ

q (ε ≥ 0) is expected to be satisfied; hence,

p(ε) = p(0) e
−βq ε
q . (18)

Let us emphasize at this point that this distribution precisely is
the one that optimizes, under simple constraints, the nonadditive

entropy Sq = k
1−
∑

i p
q
i

q−1
(S1 = SBG = −k

∑

i pi ln pi;
∑

i pi = 1).8–10

From the discussion presented in Fig. 2, as well as a variety
of numerical checks that we have concomitantly performed, we
are allowed to conjecture that (q, βq) = (4/3, 10/(3w0)) for αA/d
∈ [0, 1]. Therefore, the N → ∞ limit of the random geometry
growth model that we have focused on here appears to be isomor-
phic to a simple model within nonextensive statistical mechanics,
more precisely the model whose total energy is just the sum of all
the site energies {εi}. This connection obviously is fully analogous to
those three described in Sec. II within Boltzmann–Gibbs statistical
mechanics. Its rigorous proof remains to be done.
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