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Work relations for a system governed by Tsallis statistics
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We derive analogs of the Jarzynski equality and Crooks relation to characterize the nonequilibrium work
associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial
temperature profile. The stationary state of such an oscillator is described by Tsallis statistics, and the work
relations for certain processes may be expressed in terms of q-exponentials. We suggest that these identities
might be a feature of nonequilibrium processes in circumstances where Tsallis distributions are found.
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I. INTRODUCTION

Work relations are remarkable identities associated with
the behavior of systems undergoing nonequilibrium thermo-
dynamic processes. As the name suggests, they refer to the
performance of mechanical work on a system brought about
by a protocol of change in external force fields while the system
exchanges heat with a coarsely specified environment. The key
point is that they hold when the thermomechanical processing
of a system takes place at an arbitrary rate, and not just in the
quasistatic limit associated with equilibrium thermodynamics.
They are therefore statements about real nonequilibrium dissi-
pative behavior and have attracted attention since they provide
a perspective on the nature of entropy production [1–12].

The identification of principles underlying the transfer of
energy in the form of heat and work motivated the initial
development of thermodynamics in the 19th century, but the
construction of a framework to justify such principles from
a microscopic perspective is still ongoing. Work relations,
and the underlying fluctuation relations or theorems, rely
on rather few assumptions about the dynamics of system
components and have proved to be extremely valuable in
this regard. One of the first results in this category was
developed by Bochkov and Kuzovlev [13,14] to describe the
statistics of nonconservative work performed on a system
in an isothermal heat bath. The Evans-Searles fluctuation
theorem [15,16] provided insight into the behavior of de-
terministic complex systems driven by external mechanical
and thermal interactions. A wider appreciation of fluctuation
theorems, and of the significant development that was then
underway in nonequilibrium statistical physics, followed from
the derivation of the Jarzynski equality [17,18], an elegant
work relation that can be established from a number of
perspectives. Further interest in the field was generated by
the Crooks relation [19], a connection between the statistics
of work performed in two isothermal processes that are driven
in a mutually time-inverted fashion. Both relations require
the system to start out in thermal equilibrium. Experimental
relevance of these results has been demonstrated [20].

We wish to explore work relations that hold for a system
exposed to an environment with a temperature gradient. The
control, characterization, and exploitation of nonisothermal
conditions at the nanoscale has received considerable attention
in recent years [21–23]. Thermodynamic concepts such as
system temperature can remain valid at these scales [24],
though it is clear that temporal and spatial fluctuations will be

important, aspects that can be accommodated through using
stochastic thermodynamics as a theoretical description [10].
The basis of this approach is a framework of stochastic system
dynamics in which the concept of a temperature gradient
enters through a specification of the statistical properties of
the environmental noise.

We have in mind applications to experimental systems such
as tweezers [25] and nanomechanical devices [26] that can be
used to manipulate small objects such as colloidal particles.
There are challenges in establishing and controlling a temper-
ature profile at submicron spatial scales, but progress has been
made in this direction [27–29]. Models of heat transport can
be used to describe the elevation of local temperature brought
about by laser absorption in a liquid medium [30] and by Joule
heating in conducting nanostructures [21], and it seems that
a range of thermal profiles can be established using suitable
arrangements of heat sources and sinks, together with choice
of media [29,31].

In such a nonisothermal environment, a system cannot
achieve thermal equilibrium, and our aim is to understand
how the Jarzynski and Crooks results need to be adapted.
Work relations have been considered for other systems that
are prevented from reaching thermal equilibrium, such as
glasses [32]. If the dynamics prevent or delay evolution
towards the true equilibrium, a free energy of the final state
might emerge as a valid concept, and so too might work
relations.

We focus our attention on the specific case of a harmonically
bound particle in a quadratically varying thermal profile.
We employ overdamped stochastic dynamics to model the
behavior of such a particle showing that is governed by Tsallis
rather than Boltzmann statistics in the stationary state [33]. We
find that by using a suitable notation, the two work relations
can be written in a very intuitive form for certain classes of
protocols. A similar generalization of the work relations to
Tsallis statistics was proposed by Ponmurugan [34] in the
context of a basis in Tsallis entropy. In contrast, our results
emerge from a more standard thermodynamic framework
where Gibbs-Shannon entropy represents the uncertainty of
the state of a stochastic system. We review the nonisothermal
stochastic dynamics of systems in Sec. II, describe the Tsallis
oscillator in Sec. III, and then present analogs of the Jarzynski
and Crooks results in Secs. IV and V. We consider whether
existing experimental techniques could be used to establish
nonisothermal conditions to a degree that suits our purpose in
Sec. VI before giving our conclusions in Sec. VII.
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II. DYNAMICAL FRAMEWORK

Dynamical approaches that do not introduce noise are
available [1,2], but a stochastic framework [35–37] has a
number of intuitive and mathematical advantages [12]. We
consider a system that is weakly coupled to a complex
environment where the uncertainty in the interactions that
take place between them as time passes is represented by a
stochastic force in the system dynamics.

We focus attention on a particle that moves in one spatial
dimension under the influence of a confining potential, a
dissipative force proportional to the particle velocity and a
stochastic force with a strength related to the local temperature
of the environment but lacking autocorrelation. The dynamics
in the overdamped limit are specified by

ẋ = − 1

mγ

∂φ(x,t)

∂x
+

(
2kBTr (x)

mγ

)1/2

ξ (t), (1)

where x is the particle position, m is its mass, φ is the potential,
γ is the friction coefficient, kB is the Boltzmann constant,
and Tr is the temperature of the environment. The noise ξ

has statistical properties 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′),
where the brackets denote an average over realizations.
Equivalently we can express the dynamics using the following
Itō-rules stochastic differential equation

dx = − φ′

mγ
dt +

(
2kBTr (x)

mγ

)1/2

dW, (2)

where φ′ = ∂φ/∂x and dW is an increment in a Wiener
process with 〈dW 〉 = 0 and 〈(dW )2〉 = dt .

The work performed on the system as it follows a trajectory
(denoted �x) in an interval 0 � t � τ is

W [�x] =
∫ τ

0

∂φ[x(t),t]

∂t
dt =

∫ τ

0
Ẇ [x(t),t]dt, (3)

and for a constant environmental temperature Tr = T0 it can
readily be demonstrated [12,17] that

〈exp(−W/kBT0)〉 = exp(−�F/kBT0), (4)

where �F = F (φτ ) − F (φ0) is the difference in Helmholtz
free energy, at temperature T0, brought about by a change in
the potential from φ0 = φ(x,0) to φτ = φ(x,τ ). The brackets
denote an expectation over all trajectories possible under
the dynamics, and represent either a path integration 〈·〉 =∫

d �xP[�x](·) where P is a trajectory probability density, or the
average 〈·〉 = ∫

dWp(W )(·) where p is the probability density
for the work done. Equation (4) is the celebrated Jarzynski
equality, and it holds for an arbitrary work protocol as long as
the system is initially in thermal equilibrium.

Under similar isothermal conditions and initial equilibrium,
the Crooks relation

pF (W ) = pR(−W ) exp[(W − �F )/kBT0] (5)

can be derived, where the suffices F and R refer to processes
that are time-inverted partners, in that the potential evolves
over time in process R according to the reverse of the evolution
in process F . The free energy difference in Eq. (5) refers to
the outcome of the F process.

Our purpose is to derive analogs of Eqs. (4) and (5) for
work processes that take place in a nonisothermal environment

in the limit of overdamped dynamics. The appropriate form
of stochastic dynamics in these circumstances has recently
received some attention [38,39], particularly with regard to
thermodynamic differences arising from the neglect of house-
keeping entropy production in an overdamped treatment [40].
The key point we exploit is that with overdamped dynamics
the entropy production in the stationary nonisothermal state
vanishes, such that it takes on something of the character of
an equilibrium state, and this analogy allows us to construct
an effective free energy change associated with a process and
hence to derive work relations.

The approach we take is to recast the dynamics of Eq. (1)
in an equivalent isothermal form

ẏ = − 1

mγ

∂	(y,t)

∂y
+

(
2kBT0

mγ

)1/2

ξ (t), (6)

in terms of a stochastic variable y(x) and an effective potential
	(y,t), and to reinterpret the work relations that emerge
in this representation. The mathematical reformulation is
straightforward. Using Itō calculus we write

dy =
(
− φ′

mγ

dy

dx
+ kBTr

mγ

d2y

dx2

)
dt + dy

dx

(
2kBTr

mγ

)1/2

dW, (7)

and we choose y(x) such that dy/dx = (T0/Tr )1/2 and

d2y

dx2
= −T

1/2
0 T ′

r

2T
3/2
r

, (8)

where T ′
r = dTr/dx, giving

dy =
(

− φ′

mγ
− kBT ′

r

2mγ

)(
T0

Tr

)1/2

dt +
(

2kBT0

mγ

)1/2

dW,

(9)
so that the effective potential is

	(y,t) =
∫ y

0
dy

(
φ′ + 1

2
kBT ′

r

)(
T0

Tr

)1/2

=
∫ x(y)

0
dx

(
φ′ + 1

2
kBT ′

r

)(
T0

Tr

)
. (10)

The effective isothermal work performed in this reformulation
is

Weff[�y] =
∫ τ

0
dt

∂	[y(t),t]

∂t
, (11)

while the effective free energy change is �Feff = F (	τ ) −
F (	0), with 	τ = 	(y,τ ) and 	0 = 	(y,0). The Jarzynski
equality is∫

d �yP[�y] exp(−Weff[�y]/kBT0) = exp(−�Feff/kBT0), (12)

and all that remains is to cast the left-hand side as an
expectation

∫
d �xP[�x] exp(−F[Ẇ ]) in terms of a functional

F of the rate of performance of work Ẇ (x,t).

III. TSALLIS OSCILLATOR

We illustrate how Eq. (12) can be interpreted for a model of
one-dimensional (1D) particle motion in a harmonic confining
potential and a temperature profile that varies quadratically
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with position measured from the center of the potential. We
consider φ(x,t) = φκ = κ(t)x2/2 and

Tr (x) = T0

(
1 + κT x2

2kBT0

)
, (13)

where κT is a parameter with the same dimensions as the spring
constant κ . This system is of interest since the Fokker-Planck
equation for the pdf P (x,t) corresponding to the dynamics of
Eq. (1) is

∂P

∂t
= ∂

∂x

(
κx

mγ
P + kB

mγ

∂(TrP )

∂x

)
, (14)

for which the stationary solution is

P κ
st (x) =

[
κT

2πkBT0

]1/2
�(1 + κ/κT )

�( 1
2 + κ/κT )

(
1 + κT x2

2kBT0

)− κ
κT

−1

,

(15)
namely a Tsallis distribution, proportional to a q-exponential
function defined by

eq(z) = [1 + (1 − q)z]1/(1−q), (16)

here with q = (κ + 2κT )/(κ + κT ) and z = −(κ +
κT )x2/2kBT0. Such distributions have received attention
because of the ubiquity of experimental data that take this
form [33]. They contrast with the more usual Gaussian
characteristic of equilibrium situations, which correspond to
the limit q → 1, or κT → 0 in this case. The work relations
that we derive will refer to processes initiated when the system
is in such a stationary state.

The effective potential 	(y,t) = 	κ (y) can be found in
closed form for this model. We have

	κ (y) =
∫ x(y)

0
dx

(
κx + 1

2
κT x

)(
1 + κT x2

2kBT0

)−1

=
(

κ + 1

2
κT

)
kBT0

κT

ln

(
1 + κT x2

2kBT0

)
. (17)

From this we can write

Weff =
∫ τ

0
dtκ̇

kBT0

κT

ln

(
1 + κT x2

2kBT0

)
, (18)

so that the functional that appears in the Jarzynski equality is

F[Ẇ ] =
∫ τ

0
dtẆ

2

κT x2
ln

(
1 + κT x2

2kBT0

)
, (19)

using Ẇ = κ̇x2/2. This becomes clearer to interpret when
written in the form

F[Ẇ ] =
∫ τ

0
dt

Ẇ

kBT0

[
T0

(Tr − T0)
ln

(
Tr

T0

)]
. (20)

The factor in square brackets is unity for an isothermal
bath, which can be demonstrated by writing Tr = T0 + ε(x),
such that for small ε we have [T0/(Tr − T0)] ln(Tr/T0) ≈
(T0/ε)[ε/T0 + O(ε2)] = 1 + O(ε) after which we take ε →
0, and the factor is less than or equal to unity for nonisothermal
conditions. For an isothermal bath we would write F =
W/kBT0.

For a given x(t), the functional F of the associated
work rate can be determined and 〈exp(−F)〉 set equal to

exp{−[F (	κ(τ )) − F (	κ(0))]/kBT0} with

exp[−F (	κ )/kBT0] ∝
∫

dy exp[−	κ (y)/kBT0]

=
∫

dy{cosh[(κT /2kBT0)1/2y]}−2κ/κT −1

= π1/2 �
(

1
2 + κ/κT

)
�(1 + κ/κT )

, (21)

noting that x = (2kBT0/κT )1/2 sinh[(κT /2kBT0)1/2y] so
that 	κ (y)/kBT0 = [2κ/κT + 1] ln cosh[(κT /2kBT0)1/2y]. In
short, the Jarzynski equality for this system is〈

exp −
∫ τ

0
dt

Ẇ

kBT0

[
T0

(Tr − T0)
ln

(
Tr

T0

)]〉

= �
[

1
2 + κ(τ )/κT

]
�[1 + κ(τ )/κT ]

�[1 + κ(0)/κT ]

�
[

1
2 + κ(0)/κT

] . (22)

IV. JARZYNSKI EQUALITY FOR MULTISTEP PROCESSES

We focus our attention on work processes consisting of
a set of N abrupt changes in the spring constant, i.e., shifts
κi−1 → κi at times t = ti for i = 1 to N , with κ0 = κ(0) and
κN = κ(τ ). The protocol of spring constant shifts is illustrated
in Fig. 1 together with a representation of a stochastic trajectory
x(t) in the presence of a background temperature profile Tr (x).
Tsallis distributions P κ

st associated with stationary states at the
beginning and end of the period are also shown: the system
begins in a stationary state, but it need not end the process
in such a condition. Note that a form of ergodic consistency
holds here in the sense that the probability density is nowhere
zero during the evolution: the stochastic dynamics can take the
system from any initial position to any final position.

For such a multistep process the functional F becomes

F({κi},{xi}) =
N∑

i=1

(κi − κi−1)

κT

ln

(
1 + κT x2

i

2kBT0

)
, (23)

FIG. 1. (Color online) Illustration of a particle trajectory x(t)
in a nonisothermal environment (indicated by background color)
as the spring constant changes in a sequence of steps. The initial
distribution of positions takes the stationary Tsallis form P

κ(0)
st . At

time τ the distribution need not take the stationary form P
κ(τ )
st , shown

for comparison.
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TABLE I. Demonstration of the Jarzynski equality for the Tsallis
oscillator for a range of work processes consisting of a step up and
down in spring constant (from κ0 to κ1 and back again) separated by a
period τ = 4, with a variety of spatial temperature profiles specified
by κT , in each case starting from a Tsallis distribution of position
characterized by q, with m = γ = kB = T0 = κ0 = 1. Results are
based on 1000 numerical realizations for each set of parameters,
using a time step of 10−5. Errors in the mean are obtained assuming
each realization is an independent sample. The left-hand side (LHS)
of Eq. (25) is expected to equal unity.

κ1/κ0 κT /κ0 q LHS of Eq. (25)

1.01 1.005 1.5 1.0000 ± 0.0001
1.05 1.025 1.49 1.000 ± 0.0011
1.10 1.05 1.49 1.000 ± 0.0017
1.20 1.10 1.48 1.000 ± 0.0021
1.40 1.20 1.46 1.001 ± 0.0072
1.75 1.375 1.44 1.00 ± 0.012
2.0 1.0 1.33 1.00 ± 0.025
4.0 2.5 1.38 1.00 ± 0.085
6.0 3.5 1.37 1.0 ± 0.12

where xi = x(ti). Hence

exp(−F) =
N∏

i=1

(
1 + κT x2

i

2kBT0

)−(κi−κi−1)/κT

=
N∏

i=1

eqi

(
− (κi − κi−1)x2

i

2kBT0

)
, (24)

where qi = 1 + κT /(κi − κi−1). This leads to the result〈
N∏

i=1

eqi

[
−�Wi

kBT0

]〉
= �

(
1
2 + κN/κT

)
�(1 + κN/κT )

�(1 + κ0/κT )

�
(

1
2 + κ0/κT

) , (25)

where �Wi = (κi − κi−1)x2
i /2 is the work associated with

the ith step change in spring constant, such that the total
work done is W = ∑N

1 �Wi . The notation now makes very
apparent the resemblance to the isothermal Jarzynski equality
in Eq. (4). The brackets here refer to averaging according
to 〈·〉 = ∫ ∏N

0 (·)dxipT(x0,x1, . . . ,xN ), where x0 = x(0) and
pT is the probability that the dynamics generate a discrete
trajectory {xi}. If κT → 0 the q-exponentials tend towards
ordinary exponentials and the � functions can be represented
using Stirling’s approximation such that the right-hand side of
Eq. (25) reduces to (κ0/κN )1/2, as expected.

It is straightforward to verify the identity (25) in simple
cases such as a process consisting of a step up from κ0 to κ1

at time t1 = 0 followed by a step back down to κ2 = κ0 at
t2 = τ . We select initial positions according to the stationary
distribution P

κ0
st (x0) given in Eq. (15) with a given κT ,

and solve the stochastic dynamics in Eq. (2) numerically
in order to evaluate x1 and x2 and hence �W1 and �W2.
The expectation of eq1 (−�W1/kBT0)eq2 (−�W2/kBT0) over
a number of realizations can be shown to be consistent with
unity, within statistical uncertainty, as indicated in Table I. An
illustration of the distribution of

∏N
i=1 eqi

(−�Wi/kBT0) for a
more complex cyclic process is shown in Fig. 2.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FIG. 2. (Color online) Distribution of values of Y =∏4
i=1 eqi

(−�Wi/kBT0) for a cyclic process with κ0 = 1, κ1 = 1.5,
κ2 = 2, κ3 = 0.5, and κ4 = 1, with t2 − t1 = t3 − t2 = t4 − t3 = 0.1,
and m = γ = kB = T0 = κT = 1, obtained from 105 realizations
with a time step of 10−4. The mean of the distribution is 0.999
with statistical uncertainty of 0.001, verifying the analog Jarzynski
equality (25) for this process.

V. CROOKS RELATION FOR A STEP PROCESS

Our next task is to determine the analog of the Crooks
relation for a Tsallis oscillator. The simplest demonstration
involves an F process consisting of a step up in spring constant
from κ0 to κ1 � κ0 starting from a stationary state, such that the
corresponding R process is the step down from κ1 to κ0. It is
straightforward to evaluate the statistics of work performed
from the statistics of position prior to the step change.
We write

pF (W ) = P
κ0
st (x0)

dx0

dW
, (26)

with W = (κ1 − κ0)x2
0/2 � 0 such that dx0/dW = [2(κ1 −

κ0)W ]−1/2 and so with appropriate normalization we have

pF (W ) =
[

κT

πkBT0

1

(κ1 − κ0)W

]1/2
�(1 + κ0/κT )

�
(

1
2 + κ0/κT

)
×eq0F

(
− (κ0 + κT )W

(κ1 − κ0)kBT0

)
�(W ), (27)

with q0F = (κ0 + 2κT )/(κ0 + κT ) and where � is the Heavi-
side function. Similarly we can determine the distribution of
work W = (κ0 − κ1)x2

0/2 � 0 for the reverse process starting
from the stationary state with κ = κ1:

pR(W ) =
[

κT

πkBT0

1

(κ0 − κ1)W

]1/2
�(1 + κ1/κT )

�
(

1
2 + κ1/κT

)
×eq0R

(
− (κ1 + κT )W

(κ0 − κ1)kBT0

)
�(−W ), (28)

with q0R = (κ1 + 2κT )/(κ1 + κT ). These two distributions are
illustrated for the case of κ0/κT = 1 and κ1/κT = 2 in Fig. 3.
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FIG. 3. Probability distributions of work for process F consisting
of a step up from κ0 = κT to κ1 = 2κT (positive values of W ), and
process R specified by a step down from κ1 to κ0 (negative values of
W ), both starting from a stationary state. The mean work for the F

process is kBT0 and for the R process it is −kBT0/3.

The analog Crooks relation is then

pF (W )

pR(−W )
= �

(
1
2 + κ1/κT

)
�(1 + κ1/κT )

�(1 + κ0/κT )

�
(

1
2 + κ0/κT

)
×

(
1 + κT W

(κ1 − κ0)kBT0

)− κ0
κT

−1

×
(

1 − κT W

(κ0 − κ1)kBT0

) κ1
κT

+1

, (29)

defined in this case for W � 0, which may be written in the
form

pF (W )

pR(−W )
= exp{−[F (	κ1 ) − F (	κ0 )]/kBT0}

×
(

1 + κT W

(κ1 − κ0)kBT0

)(κ1−κ0)/κT

, (30)

and the final factor can be written as eqR
(W/kBT0) with

qR = 1 − κT /(κ1 − κ0) or [eqF
(−W/kBT0)]−1 with qF = 1 +

κT /(κ1 − κ0). Once again, the notation makes it quite apparent
that the Crooks relation for the pair of processes under
isothermal conditions, in the form of Eq. (5), is recovered
when qF,R → 1 and 	κ → φκ as κT → 0.

We can further conclude from these distributions that
the mean work performed in the F process 〈W 〉F =∫

WpF (W )dW is given by (κ1 − κ0)kBT0/(2κ0 − κT ), as long
as κ0 � κT /2, and the mean work for the R process is
−(κ1 − κ0)kBT0/(2κ1 − κT ), assuming that κ1 � κT /2. For
a process consisting of a step up, the establishment of a
stationary state, and a step down, the mean work would
therefore be

〈W 〉F + 〈W 〉R = 2(κ1 − κ0)2kBT0

(2κ0 − κT )(2κ1 − κT )
, (31)

which is never negative, and furthermore tends towards a
known result [20] for such a process in the isothermal limit as
κT → 0.

0
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FIG. 4. (Color online) Verification of the analog Crooks relation
Eq. (30) for a step up from κ0 = κT to κ1 = 2κT and a step down
from κ1 to κ0, based on 106 particle trajectories with a time step of
10−4, with m = γ = kB = T0 = κT = 1.

As an illustration of a possible experimental verifi-
cation of the analog Crooks relation, we have gener-
ated trajectories according to Eq. (1) for a step up
from κ0/κT = 1 to κ1/κT = 2, and the corresponding
step down, both starting from the appropriate station-
ary state, in order to compute the work distributions.
A plot of lnqR

[pF (W/kBT0)/pR(−W/kBT0) exp{[F (	κ1 ) −
F (	κ0 )]/kBT0} against W/kBT0 should be a straight line with
a gradient of unity, where lnq(z) = (z1−q − 1)/(1 − q) is the
q-logarithm [33]. Such an outcome is apparent in Fig. 4.

VI. PRACTICAL CONSIDERATIONS

The work relations will depart significantly from the form
taken under isothermal conditions when κT /κ ∼ 1 and we
should consider whether current methods for establishing a
thermal profile in a particle trap can provide such circum-
stances. Spring constants for particle trapping with optical
tweezers in a liquid medium are typically of the order of 10−2

pN/nm [28,41] and if we adopt this value for κT in Eq. (13), the
thermal gradient κT x/kB at a typical displacement of 10 nm
from the trap center would be about 10 K/nm. This is not an
unattainable gradient in a solid system [21,26] but could pose
experimental challenges for a fluid system.

In contrast, an approximately quadratic temperature profile
over a spatial scale of microns with a peak thermal gradient
of about 10 K/μm can be established by laser illumination of
a patterned nanostructure immersed in a fluid medium [29].
A particle can be confined within such a profile by ther-
mophoresis (thermal diffusion) [42] or potentially by optical
methods as well. Thermophoretic confinement provides much
weaker trapping, with a spring constant of order 10−5 pN/nm.
The effect is equivalent to the presence of a potential given
in dimensionless form by φ(x)/kBT = ST �Tr (x), where
T is an effective constant ambient temperature and ST is
the Soret coefficient that compares the strength of thermal
diffusion, in response to a temperature gradient, with that of
ordinary diffusion down a density gradient. For a quadratic
temperature profile the confinement is harmonic with an effec-
tive spring constant κ = T ST κT and strongly nonisothermal
conditions will therefore be established if T ST ∼ 1. Such a
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thermophoretic trap was demonstrated in [29] using 200 nm
polystyrene spheres with ST ∼ 3 K−1, and hence κT ∼ 10−3κ ,
but by trapping smaller species the Soret coefficient could
potentially be reduced to 10−2 K−1. There remains the
challenge of ensuring that such a trap is strong enough to retain
a particle for a long enough time to perform measurements,
and compromises will need to be made between the desired
temperature profile and such requirements. Nevertheless, it
seems possible that with further technological development
the conditions of interest might be attainable.

VII. CONCLUSIONS

Work relations exist for systems that are maintained away
from thermal equilibrium by constraints, and a number of such
cases have been discussed [43–45]. The situation we have
explored here is of interest since the system in question, when
described using overdamped dynamics, is governed by Tsallis

statistics in its stationary state. Such statistical properties have
been noted in a variety of physical systems [33], and contrast
with the more usual Gaussian statistics of thermal equilibrium.
The analogs of the Jarzynski equality and Crooks relation
for such a system, constructed for certain processes, take a
particularly transparent form when we make use of the q-
exponential functions associated with Tsallis statistics.

Stochastic entropy production can provide the concep-
tual underpinning of work relations in nonisothermal as
well as isothermal conditions, employing the usual Gibbs-
Shannon form rather than the Tsallis entropy. We believe
that experimental verification of these identities might be
possible in small systems where the appropriate nonisothermal
environment can be established and controlled.
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