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In this Letter, we show that the Shore-Johnson axioms for the maximum entropy principle in statistical
estimation theory account for a considerably wider class of entropic functional than previously thought.
Apart from a formal side of the proof where a one-parameter class of admissible entropies is identified, we
substantiate our point by analyzing the effect of weak correlations and by discussing two pertinent
examples: two-qubit quantum system and transverse-momentum behavior of hadrons in high-energy
proton-proton collisions.
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The concept of entropy indisputably plays a pivotal role in
modern physics [1,2], statistics [3–5], and information theory
[6,7]. In each of these fields the entropy paradigm has been
formulated independently and with different applications in
mind.While, in physics, the entropy quantifies the number of
distinct microstates compatible with a given macrostate, in
statistics, it corresponds to the inference functional for an
updating procedure, and in information theory, it determines a
limit on the shortest attainable encoding scheme.
However, recent developments in high-energy physics

[8,9] and complex dynamical systems in particular [10–13]
have brought about the need for a further extension of the
concept of entropy beyond the conventional Shannon-
Gibbs paradigm. Consequently, numerous generalizations
proliferate in the current literature ranging from the additive
entropies of Rényi [14] and Burg [15] through the rich class
of nonadditive entropies [16–21] to more exotic types of
entropies [22]. There are also parallel efforts underway to
classify all feasible entropic functionals according to their
group properties [23], generalized additivity rules [24] or
asymptotic scaling [13,25].
Regardless of a particular generalization, the key usage

of entropy is in statistical estimation theory which, in turn,
crucially hinges on the maximum entropy (ME) principle
(MEP) and its various reincarnations (e.g., principle of
maximum caliber, principle of minimum cross-entropy, or
minimum Akaike information criterion). The MEP can be
formulated as follows [7,26,27].
Theorem 1 (MEP).—Given the set of constraints

C ¼ fIkgνk¼1, the best estimate of the underlying (i.e., true)
probability distribution P ¼ fpigni¼1 is the one that max-
imizes the entropy functional SðPÞ subject to the con-
straints; i.e., it maximizes the Lagrange functional

SðPÞ −
Xν
k¼1

λkIk: ð1Þ

In the case of inductive inference, the constraints, or
prior information, are given in terms of linear expectation
values; i.e., the constraints considered are of the form

Ik ≡ hIki ¼
X
i

Ik;ipi; ð2Þ

where fIk;ig are possible realizations (alphabet) of the
observable Ik. Other types of constraints, such as escort
means, quasilinear means, or noninductive prior informa-
tion, such as the Lipshitz-Hölder exponent of probability
distributions, are not considered at this stage.
MEP was pioneered by Jaynes who first employed

Shannon’s entropy (SE) functional in the framework of
equilibrium statistical physics [26,27]. Since then, MEP has
rapidly become a powerful tool, e.g., in nonequilibrium
statistical physics, astronomy, geophysics, biology, medical
diagnosis, or economics [11,28].
The rationale behind the MEP is typically twofold: first,

maximizing entropy minimizes the amount of prior infor-
mation built into the distribution (i.e., ME distribution is
maximally noncommittal with regard to missing informa-
tion); second, many physical systems tend to move towards
(or concentrate extremely close to) ME configurations over
time [1,2,11,26].
As successful as Shannon’s information theory has been,

it is clear by now that it is capable of dealing with only a
limited class of systems. In fact, only recently, it has
become apparent that there are many situations of practical
interest requiring more “exotic” statistics which does not
conform with the canonical prescription of the classical ME
(known as Boltzmann-Gibbs statistics) [11]. However, it
cannot be denied that the ME approach deals with statistical
systems in a way that is methodically appealing, physically
plausible, and intrinsically nonspeculative (ME invokes no
hypotheses beyond the evidence that is in available data).
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Thus, one might be tempted to extend MEP also to other
entropy functionals, particularly when the ensuing ME
distributions differ from Boltzmann-Gibbs ones in some
desirable way (e.g., they have specific heavy tails). Entropy
functionals in question should not be arbitrary, they ought
to satisfy some “reasonable” properties. For instance, in
information theory, such properties are typified by coding
theorems [29,30] or axiomatic rules (à la Shannon-
Kchinchine type of axioms [14,31]). Recently, however,
doubts have been raised about feasibility of this program.
Arguments involved rest primarily on Shore-Johnson (SJ)
axioms of statistical estimation theory [32,33].
Shore-Johnson axioms.—From the point of statistics,

MEP is an estimation method, approximating probability
distribution from the limited prior information. As such, it
should obey some consistency rules. SJ introduced a set of
axioms, which ensure that the MEP estimation procedure is
consistent with desired properties of inference methods.
These axioms are [4]
Axiom 1: Uniqueness.—The result should be unique.
Axiom 2: Permutation invariance.—The permutation of

states should not matter.
Axiom 3: Subset independence.—It should not matter

whether one treats disjoint subsets of system states in terms
of separate conditional distributions or in terms of the full
distribution.
Axiom 4: System independence.—It should not matter

whether one accounts for independent constraints related to
independent systems separately in terms of marginal
distributions or in terms of full-system constraints and
joint distribution.
Axiom 5: Maximality.—In absence of any prior infor-

mation, the uniform distribution should be the solution.
For the sake of simplicity, we focus on a discrete version

of SJ axioms only. The corresponding generalization of SJ
axioms to continuous distributions was done, e.g., in
Refs. [4,34], and it is easy to verify that results obtained
here are (with minor adjustments) valid also in continuous-
state spaces.
In recent years, there has been much discussion of the

consistency of MEP for generalized, i.e., non-Shannonian
entropies. A typical claim has been that the SJ axioms
preclude the use of MEP for generalized entropies, since
these introduce an extra bias in the estimation of the
ensuing ME distributions [32,33,35]. Here, we show that
the SJ axioms, as they stand, certainly allow for a wider
class of entropic functional than just SE. Central to this is
the following theorem due to Uffink [34].
Theorem 2 (Uffink theorem).—MEP satisfies Shore-

Johnson consistency axioms if and only if the following
prescription holds: Maximize UqðPÞ under the set of
constraints C ¼ fIkg, where UqðPÞ ¼ ðPn

i¼1 p
q
i Þ1=ð1−qÞ

for any q > 0, modulo equivalency condition.
The equivalency condition means that all functionals

f½UqðPÞ� for strictly increasing functions f are equivalent

(∼) in the sense that they provide the same ME distribution
[34]. A simple variant of the proof together with related
discussion is provided in the Supplemental Material [36].
Here, we list some pertinent results. (a) From Axioms 1–3
alone follows that the entropy is equivalent to the sum-form
functional

UðPÞ ¼
Xn
i¼1

gðpiÞ ∼ f

�Xn
i¼1

gðpiÞ
�
: ð3Þ

Thus, Axioms 1–3 alone exclude a wide class of existent
entropies. Examples include the following. ða; λÞ-escort
entropies [44]; Sa;λðPÞ¼1=ðλ−aÞ½ðPip

a
i Þλð

P
ip

λ
i Þ−a−1�

or Jizba-Arimitsu hybrid entropy [20,21]; DqðPÞ ¼
lnq exp½−

P
iPiðqÞ lnpi�, where lnqx¼ðx1−q−1Þ=ð1−qÞ

is the q logarithm and PiðqÞ ¼ pq
i =
P

jp
q
j is the escort

distribution [2]. (b) Axiom 4 ensures that any entropy func-
tional consistent with SJ axioms should be equivalent toP

ip
q
i . There are a number of entropic functionals that

do not conform to this form, examples include: ðc; dÞ-
entropy [10,25]; Sc;dðPÞ ¼

P
iΓð1þ d; 1 − c logpiÞ or the

Kaniadakis entropy [45]; SκðPÞ¼ð1=2κÞPiðp1þκ
i þp1−κ

i Þ.
(c) Axiom 5 implies that the inference functional should be
of the form

UqðPÞ ∼
�X

i

pq
i

�
1=ð1−qÞ

for q > 0: ð4Þ

Only for q > 0, it is guaranteed that UqðPÞ is Schur-
concave which is a sufficient property for the maximality
axiom [36]. For example, the Burg entropy [46] KðPÞ ¼
K
P

i lnpi provides an example of an entropy functional
belonging to the class of UqðPÞ, but not fulfilling the
maximality axiom. (d) SE is a unique candidate for MEP
only when an extra desideratum is added to SJ axioms,
namely, strong system independence (SSI): Whenever two
subsystems of a system are disjoint, we can treat the
subsystems in terms of independent distributions.
So far, the additivity property of the entropy functional

was not our concern. Note, however, that UqðPÞ—known
also as Rényi entropy powers [47], obey the multiplicative
composition rule UqðA ∪ BÞ ¼ UqðAÞUqðBÞ for indepen-
dent events. With appropriate f one can construct entropies
with various types of composition rules. For instance, for
fðxÞ ¼ ln x, we get a class of additive Rényi entropies [14],
if fðxÞ ¼ lnQx we obtain Q-additive Sharma-Mittal entro-
pies [19]. For Q ¼ q, we end up with the class of Tsallis
entropies [1]. Consequently, the MEP procedure implied by
SJ axioms does not preclude any additivity rule as long as
the entropy is ∼UqðPÞ.
Despite this, it is asserted in a number of recent works,

cf. e.g., [32,33,35], that the only inference functional
consistent with the SJ desiderata is SE, i.e., the q ¼ 1
case. This was also the original result of SJ. The point of
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disagreement with these works can be retraced back to the
axiom of system independence and its implementation in
the original SJ proof [4,5]. Notably, SJ assumed that,
because the prior distributions are independent and because
the data-driven constraints I1 and I2 are independent (i.e.,
they give no information about any interaction between the
two systems), the posterior distribution P must be written
as a product of marginal distributions U and V. However,
this goes well beyond the original SJ Axiom 4 in that the
presumed independency of constraints invokes (unwar-
ranted though often correct) a unique factorization rule
for P. Clearly, having no information about interaction
encoded in constraints (i.e., having independent con-
straints) is not the same as having no correlations among
systems. Now, we show that there is an implicit assumption
about the state-space structure in the SJ proof implied by
the factorization rule pij ¼ uivj.
Factorization rule revisited.—Let us concentrate on the

composition rule of ME distributions for two systems
described by marginal distributions U ¼ fuigni¼1 and
V ¼ fvjgmj¼1 and related constraints

P
n
i¼1 I iui ¼ I andP

m
j¼1J jvj¼J. The ME distributionsU and V are obtained

by maximizing UqðUÞ and UqðVÞ, respectively, giving
q

1 − q
½UqðUÞ�quq−1i − αI − βII i ¼ 0; ð5Þ

and likewise for V. The solution is

ui ¼ ½UqðUÞ�−1
�
1 − ðq − 1Þ βIΔI i

qUqðUÞ
�

1=ðq−1Þ
; ð6Þ

and analogously for uj. Here, ΔI i ¼ I i − I (similarly for
ΔJ j). Lagrange multiplier αI (and similarly αJ ) was
eliminated via the normalization condition. The ME dis-
tribution of the joint system P ¼ fpijg includes both
constraints, and hence,

q
1 − q

½UqðPÞ�qpq−1
ij − αIJ − βIJ ðI i þ J jÞ ¼ 0: ð7Þ

By inserting (5) into (7), we obtain [36]

½pijUqðPÞ�q−1 − 1 ¼ f½uiUqðUÞ�q−1 − 1g
þ f½vjUqðVÞ�q−1 − 1g; ð8Þ

which can be rewritten in terms of the q product x ⊗q y ¼
½x1−q þ y1−q − 1�1=ð1−qÞþ (with x; y > 0) as

1

pijUqðPÞ
¼ 1

uiUqðUÞ ⊗q
1

vjUqðVÞ
: ð9Þ

When we apply to (9) the q logarithm, we obtain

IqðPÞ⊖qSqðPÞ ¼ ½IqðUÞ⊖qSqðUÞ� þ U ↔ V: ð10Þ
Here, IqðrkÞ ¼ lnqð1=rkÞ is the Tsallis-type Hartley infor-
mation, SqðRÞ ¼ lnqUqðRÞ is the Tsallis entropy and
x⊖qy ¼ ðx − yÞ=½1þ ð1 − qÞy� is the q difference. Note
that (10) represents a q deformed version of the additive
entropic rule. For q → 1, both (9) and (10) reduce to
pij ¼ uivj, which is tantamount to SSI. The reverse is true
as well. By reexpressing (9) in terms of escort distributions
PijðqÞ, UiðqÞ, and VjðqÞ as

PijðqÞ
pij

¼ UiðqÞ
ui

þ VjðqÞ
vj

− 1; ð11Þ

and using pij ¼ uivj, we obtain UiðqÞ ¼ ui, VkðqÞ ¼ vk
(for all i, k). The latter have (save for uniform and
deterministic distributions) a unique solution [2] q ¼ 1.
Systems where SSI fails are, e.g., systems where the

number of accessible statesWðNÞ of a state set AN does not
grow exponentially with the number of distinguishable
subsystems N, i.e., WðNÞ ≠ μN; μ > 1 for N ≫ 1 [hence,
WðN þMÞ ≠ WðNÞWðMÞ] [48]. By the asymptotic equi-
partition property [49], the “typical” size W̃ðNÞ of AN is
eSðANÞ, S is SE. The ensuing typical region contains almost
all the probability of AN as N increases [50]. Of all
probability assignments compatible with constraints,
MEP defines the largest typical region of AN , [7]. If A
and B are independent, then by SJ MEP, SmaxðAN ∪ BMÞ ¼
SmaxðANÞ þ SmaxðBMÞ, and hence, W̃maxðNþMÞ ¼
W̃maxðNÞW̃maxðMÞ. By enforcing SSI, this extends
to WðNþMÞ¼WðNÞWðMÞ which, however, conflicts
assumed WðN þMÞ ≠ WðNÞWðMÞ. So, states in
ANþMnÃNþM carry correlations not reflected in “indepen-
dent” constraints. In fact, sampling procedures implying
independent constraints and, indeed, the entire notion of
independent sets largely sample only states in typical sets
which might misrepresent existent correlations. Note that,
despite the minuscule probability carried by ANþMnÃNþM,
the cardinality of this set is ∝ WðN þMÞ for N;M ≫ 1,
i.e., truly huge [50]. With SSI, one implicitly assumes that
WðNÞ ∝ μN . If the scaling is unknown, one should use
MEP with UqðPÞ as this is noncommittal about the form
of WðNÞ. Sub- (or super-) exponential scaling is often
found, e.g., in strongly correlated systems in quantum
mechanics [51,52] or astrophysics [53,54].
Issue of correlations.—Now, we will see that, for q ≠ 1,

intrinsic system correlations are present even when
constraints are SJ independent. Let us investigate the
regime where q is close to 1 and expand a generic escort
distribution RkðqÞ in the vicinity of q ¼ 1 (q≡ 1þ Δq) as

RkðqÞ ¼ rk − rkΔq½IðrkÞ − ΓR
1 � þ rk

ðΔqÞ2
2

× f½IðrkÞ − ΓR
1 �2 − ΓR

2 g þO½ðΔqÞ3�; ð12Þ
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where IðrkÞ≡ I1ðrkÞ ¼ lnð1=rkÞ is the Hartley information
of the kth event and ΓR

n are the bit-cumulants [2]. Notably,
ΓR
1 ¼ S ¼ −

P
krk ln rk is the SE and ΓR

2 ¼ P
krkln

2rk −
ðPkrk ln rkÞ2 is the varentropy [55]. By inserting (12) into
(11), we obtain

IðpijÞ − IðuiÞ − IðvjÞ − ðΓP
1 − ΓU

1 − ΓV
1 Þ

¼ Δq
2

f½IðpijÞ − ΓP
1 �2 − ½IðuiÞ − ΓU

1 �2

−½IðvjÞ − ΓV
1 �2 − ðΓP

2 − ΓU
2 − ΓV

2 Þg: ð13Þ

It is easy to show that, for independent systems, one has
ΓU
k þ ΓV

k ¼ ΓUV
k , where UV ≡U × V is the ensuing joint

distribution. Thus, the differences ðΓP
k − ΓU

k − ΓV
k Þ quantify

the correlations in the system. This can be seen by
considering pij ¼ ð1þ ϵijÞuivj, where maxijjϵijj ≪ 1. In
this case, we have

ΓP
1 ¼ ΓU

1 þ ΓV
1 −

1

2
hϵ2i0 þOðϵ3Þ; ð14Þ

ΓP
2 ¼ ΓU

2 þ ΓV
2 þ hϵln2ðUVÞi0 þOðϵ2Þ; ð15Þ

where (see also Supplemental Material [36])

hϵ2i0 ¼
X
ij

ϵ2ijuivj; ð16Þ

hϵln2ðUVÞi0 ¼
X
ij

ϵijln2ðuivjÞuivj: ð17Þ

The term hϵ2i0 represents the strength of the correlations,
and is always non-negative. The case hϵ2i0 ¼ 0 happens
only for independent distributions corresponding to q ¼ 1.
ΓP
2 represents a specific heat of the system (e.g., Cp in

thermal systems) [2,56]. Thus, expression (17) represents
the difference in specific heats ΔC with and without
correlations ϵij. A connection of the q parameter with
ϵij can be established by inserting (16)–(17) into (13),
multiplying the whole equation by uivj, and summing over
i and j. At the leading order in ϵ, we get

q ¼ 1 − 2
hϵ2i0

hϵln2ðUVÞi0
¼ 1þ 4

ΔS
ΔC

: ð18Þ

Now, let us provide two apt examples of MEP with q ≠ 1.
Examples.—First, we consider a generic two-qubit quan-

tum system (e.g., a bipartite spin-1
2
system). Starting from

unentangled states j11i; j10i; j01i; j00i, we pass to the Bell
basis of maximally entangled orthonormal states jΨ�i ¼
ð1= ffiffiffi

2
p Þðj00i � j11iÞ and jΦ�i ¼ ð1= ffiffiffi

2
p Þðj01i � j10iÞ.

Let us examine the situation where the only available
constraint is given by a Bell-CHSH observable [51,57]
B ¼ jΦþihΦþj − jΨ−ihΨ−jmean value of which yields the

(scaled) CHSH Bell inequality [57,58]. According to MEP,
we should maximize SðρÞ ¼ ½TrðρqÞ�1=ð1−qÞ (q > 0) subject
to constraints TrðρÞ ¼ 1 and TrðρBÞ ¼ b with jbj ≤ 1. The
corresponding MEP state, is given by [36]

ρMEP ¼ Z−1ðx; qÞ½ðjΦ−ihΦ−j þ jΨþihΨþjÞ
þ ð1þ xÞ1=ðq−1ÞjΦþihΦþj
þ ð1 − xÞ1=ðq−1ÞjΨ−ihΨ−j�; ð19Þ

where x ¼ β=α is the ratio of Lagrange multipliers and
Zðx; qÞ ¼ 2þ ð1þ xÞ1=ðq−1Þ þ ð1 − xÞ1=ðq−1Þ. We see that
ρMEP is diagonal in the Bell basis. This Bell-diagonal state
is not entangled if and only if [57] all its eigenvalues are
less than or equal to 1

2
. From concavity of ð1� xÞ1=ðq−1Þ for

q ≥ 2 and ensuing Jensen’s inequality, it is easy to
conclude [36] that all eigenvalues of ρMEP are ≤1=2.
Consequently, for q ≥ 2 we obtain that ρMEP is not
entangled (i.e., is separable). The situation for q < 2 is
not conclusive, though inseparability can be deduced
numerically. Fortunately, the case q ¼ 1 (i.e., the SE case)
is accessible analytically [36]. In this case, the eigenvalues
of ρMEP are pΦ− ¼ pΨþ ¼ 1

4
ð1 − b2Þ, pΦþ ¼ 1

4
ð1 − bÞ2,

pΨ− ¼ 1
4
ð1þ bÞ2. So, particularly for b ∈ ð ffiffiffi

2
p

− 1; 1�,
Shannonian MEP clearly predicts entanglement. How-
ever, one can find a non-MEP state [57], namely,

ρ ¼ bjΦþihΦþj þ 1

2
ð1 − bÞðjΨþihΨþj þ jΦ−ihΦ−jÞ;

ð20Þ

which satisfies the MEP constraint and is separable for
b ≤ 1

2
. Hence, Shannonian MEP predicts entanglement

even if, for b ∈ ð ffiffiffi
2

p
− 1; 1

2
�, there is a separable state that

is fully compatible with the constraining data.
Clearly, the correct inference scheme (such as a pre-

sumed Shannonian MEP) should not yield an inseparable
state if there exists (albeit only theoretically) a separable
state compatible with the constraining data, or else one may
get erroneous results (e.g., in quantum communication) by
trying to use the entanglement inferred by MEP, while in
reality, there is no entanglement present [57]. Note that,
whenMEP with Uq; q ≥ 2 is chosen, one can avoid the fake
entanglement for any b ≤ 1. The reason why Shannonian
MEP implies spurious (quantum) correlations is that, in that
analyzed quantum system, it does not comply with SSI due
to use of the nonlocal Bell-CHSH observable. We note that
problems with Shannonian MEP should be generically
expected in entangled systems as entanglement does not
conform to SSI because measurement results on (possibly
distant) noninteracting subsystems (giving independent
constraints) are still correlated. The situation should be
particularly pressing in strongly entangled N-partite sys-
tems because there WðNÞ ∝ Nρ; ρ > 0, cf. [35,59].
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As a second example, we consider the transverse
momentum (pT) distributions of hadrons produced in pp
collisions at very high energies (center-of-mass energies
∼102 − 103 GeV) as measured in RHIC and LHC experi-
ments. The term transverse relates to the direction of
colliding protons. From particle phenomenology, it is
known that, in these cases, the effective number of
distinguishable states with energy E shows a subexponen-
tial growth [60,61], i.e.,WðEÞ ∝ expðhNiγÞwith 0 < γ < 1
and h� � �i taken with respect to an appropriate multiplicity
distribution. Thus, SSI (and hence, Shannon’s MEP) is not
warranted. In fact, the single-particle pT distributions are
best fitted by the q-exponential distributions (resulting from
MEP based on Uq) with q ∈ ½1.05; 1.10� depending on the
type of the collision [8,62–65]. In these cases, the con-
straint (2) is represented by the mean of the transverse
energy ET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT2þm2

p
(m is hadron’s rest mass). The

typical picture is that, out of many hadrons produced in a
given event, only one is selected (system A). The remaining
(N − 1) particles (N is event dependent) act as a kind of a
heat bath (HB) (system B) described by some apparent
temperature. In this HB, the single-hadron pT is effectively
distributed according to the Maxwell-Jüttner distribution.
The final distribution uðpTÞ is obtained by averaging over
many events with distinct apparent temperatures. Systems
A and B are clearly disjoint, but due to event-to-event
temperature fluctuations the joint distribution pðpT; pBÞ ≠
uðpTÞvðpBÞ, so SSI is, indeed, violated. Now, since q is
close to 1, we can consider only the leading order of ϵij
in (q − 1), i.e., ϵij ¼ ð1 − qÞβ2ΔEu

iΔEv
j . From (18), then,

follows that [36]

q ¼ 1þ hNi − 1

β2hðΔEvÞ2i0
¼ 1þ hNi − 1

Cv
V

: ð21Þ

where hðΔEvÞ2i0 ¼ ∂2 logZv=∂β2 ¼ Cv
V=β

2 (Zv and Cv
V

represent partition function [i.e., UqðVÞ] and heat capacity
of the HB) and hN − 1i ¼ βhEvi0 is the virial relation
where 1=β is the kinetic temperature of the hadronic HB.
Note that system A factored out. Relations of the type (21)
frequently appear in phenomenological studies on high-
energy pp collisions [8,66,67].
Conclusions.—In summary, we have shown that the SJ

axiomatization of the inference rule does account for a
substantially wider class of entropic functionals than just
SE. The root cause could be retraced to unreasonably
strong assumptions employed by SJ in their proof—
assumptions that go beyond the original SJ axioms. In
particular, we have shown that Shannonian MEP is singled
out as a unique method of statistical inference only insofar
as an extra axiom of strong system independence is added
to the SJ desiderata. While, for systems where state space
scales exponentially with its size [as, e.g., in (quasi-)
ergodic systems [50] ] SE is the only entropy compatible

with SJ axioms, for systems with sub- (super-) exponential
growth, the assumption of SSI is not justified and the
original proof of SJ needs revision. In our revised version of
the proof, we identified a one-parameter class of admissible
entropies whose utility was illustrated with two phenom-
enologically relevant examples.
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