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We analyze the properties of networks obtained from the trajectories of unimodal maps at the transi-
tion to chaos via the horizontal visibility (HV) algorithm. We find that the network degrees fluctuate
at all scales with amplitude that increases as the size of the network grows, and can be described by a
spectrum of graph-theoretical generalized Lyapunov exponents. We further define an entropy growth rate
that describes the amount of information created along paths in network space, and find that such en-
tropy growth rate coincides with the spectrum of generalized graph-theoretical exponents, constituting a
set of Pesin-like identities for the network.

 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pesin’s theorem [1] prescribes the equality of the Kolmogorov–
Sinai (KS) entropy hKS with the sum of the positive Lyapunov ex-
ponents λi > 0 of a dynamical system, i.e. hKS = ∑

i λi . The former
is a rate of entropy growth that is a metric invariant of the dy-
namical system, while the latter is the total asymptotic expansion
rate present in the chaotic dynamics. This relation provides a deep
connection between equilibrium statistical mechanics and chaos.
In the limiting case of vanishing Lyapunov exponent, as in the on-
set of chaos in one-dimensional nonlinear maps, Pesin’s theorem
is still valid but there are important underlying circumstances that
are not expressed by the trivial identity hKS = λ = 0. At variance
with the chaotic region, at the transition to chaos phase space is no
longer visited in an ergodic way and trajectories within the attrac-
tor show self-similar temporal structures, they preserve memory
of their previous locations and do not have the mixing property
of chaotic trajectories [2,3]. For chaotic and periodic attractors the
sensitivity to initial conditions converges to an exponential func-
tion for large iteration times giving rise to the familiar positive or
negative Lyapunov exponents associated with them. At the transi-
tion to chaos exponential separation or merging of trajectories no
longer occurs, but notably the sensitivity to initial conditions does
not converge to any single-valued function and, on the contrary,
displays fluctuations that grow indefinitely with time. For initial
positions on the attractor the sensitivity develops a universal self-
similar temporal structure and its envelope grows with iteration
time t as a power law [2,3]. For unimodal maps it has been shown
[2,3] that this rich borderline condition accepts a description via a
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spectrum of generalized Lyapunov exponents that matches a spec-
trum of generalized entropy growth rates obtained from a scalar
deformation of the ordinary entropy functional, the so-called Tsal-
lis entropy expression [4,5]. The entropy rate also differs from the
KS entropy in that it is local in iteration time. That is, the entropy
rate at time t is determined only by the positions of trajectories
at this time while the KS entropy considers all previous sets of
positions. Here we present evidence that this general scenario of
unimodal maps at the onset of chaos is captured by a special type
of complex network.

Very recently [6,7], the horizontal visibility (HV) algorithm [8,9]
that transforms time series into networks has offered a view of
chaos and its genesis in low-dimensional maps from an unusual
perspective favorable for the discovery of novel features and new
understanding. We focus here on networks generated by unimodal
maps at their period-doubling accumulation points and character-
ize the fluctuations in connectivity as the network size grows. We
show that the expansion of connectivity fluctuations admits the
definition of a graph-theoretical Lyapunov exponent. Furthermore,
the entropic functional that quantifies the amount of informa-
tion generated by the expansion rate of trajectories in the original
map appears to translate, in the light of the scaling properties of
the resulting network, into a generalized entropy that surprisingly
coincides with the spectrum of generalized graph-theoretical Lya-
punov exponents. This suggests that Pesin-like identities valid at
the onset of chaos could be found in complex networks that pos-
sess certain scaling properties.

The rest of the Letter is as follows: We first recall the HV algo-
rithm that converts a time series into a network and focus on the
so-called Feigenbaum graphs [6,7] as the subfamily of HV graphs
generated by iterated nonlinear one-dimensional maps. We then
expose the universal scale-invariant structure of the Feigenbaum
graphs that arise at the period-doubling accumulation points. We
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Fig. 1. Feigenbaum graphs associated with periodic series of increasing period 2n

undergoing a period-doubling cascade. The resulting patterns follow from the uni-
versal order with which an orbit visits the positions of the attractor. The Feigen-
baum graph associated with the time series generated at the onset of chaos
(n → ∞) is the result of an infinite application of the inflationary process by which
a graph at period 2n+1 is generated out of a graph at period 2n [6].

subsequently show how to define a graph-theoretical Lyapunov ex-
ponent in this context. In agreement with the known dynamics
of unimodal maps at the transition to chaos the graph-theoretical
Lyapunov exponent vanishes, and proceed to define generalized
exponents that take into account the subexponential expansion
of connectivity fluctuations. We finally show that the Feigenbaum
graph that represents the onset of chaos admits a spectrum of gen-
eralized graph-theoretical exponents that coincide with a spectrum
of deformed entropies.

2. The Feigenbaum graph at the onset of chaos

The horizontal visibility (HV) algorithm is a general method
to convert time series data into a graph [8,9] and is concisely
stated as follows: assign a node i to each datum xi of the time
series {xi}i=1,...,N of N real data, and then connect any pair of
nodes i, j if their associated data fulfill the criterion xi, x j > xn
for all n such that i < n < j. The capability of the method as
well as other variants to transfer properties of different types of
time series into their resultant graphs has been demonstrated in
recent works [10,11]. When the series under study are the trajec-
tories within the attractors generated by unimodal or circle maps
the application of the HV algorithm yield subfamilies of visibility
graphs, named Feigenbaum and quasiperiodic graphs respectively,
that render the known low-dimensional routes to chaos in a new
setting [6,7,12]. For illustrative purposes, in Fig. 1 we show a hi-
erarchy of Feigenbaum graphs obtained along the period-doubling
bifurcation cascade of unimodal maps. At the accumulation point
of the cascade the trajectories within its non-chaotic multifrac-
tal attractor become aperiodic, and in analogy with the original
Feigenbaum treatment [13], the associated Feigenbaum graphs ev-
idence scaling properties that can be exploited by an appropriate
graph-theoretical Renormalization Group transformation [6,7]. Be-
cause the order of visits of positions of periodic attractors or of
bands of chaotic attractors in unimodal maps are universal, a rele-
vant consequence of the HV criterion is that the resulting Feigen-
baum graph at the onset of chaos is the same for every unimodal
map. That is, it is independent of the shape and nonlinearity of
the map [6,7]. This permits us to concentrate our study on a spe-
cific unimodal map, that for simplicity will be the logistic map,
and claim generality of the results.

Consider the logistic map xt+1 = f (xt) = µxt(1 − xt), 0 ! x ! 1,
0 ! µ ! 4, at the period-doubling accumulation point µ∞ =
3.5699456 . . . and generate a trajectory {xt}t=0,1,2,... within the at-
tractor. Since the position of the maximum of the map xmax = 1/2

belongs to the attractor we can choose x0 = f (1/2) as the ini-
tial condition. (The position of the maximum of the unimodal
map belongs to all the superstable periodic attractors or supercy-
cles and the accumulation point of these attractors, the attractor
at the transition to chaos, contains this position [13].) A sam-
ple of the corresponding time series is shown in the top panel
of Fig. 2, whereas in the left panel of the same figure we repre-
sent in logarithmic scales the positions of the rescaled variable
zt = f (1/2) − xt . A similar rescaling was proposed in previous
works to put in evidence the striped intertwined self-similar struc-
ture of the trajectory positions as they are visited sequentially, and
reflects the multifractal structure of the attractor [2,3]. In the right
panel of the same figure we plot, in log–log scales, a representa-
tion of the relevant variable exp k(N), where k(N) is the degree of
node N in the Feigenbaum graph associated with the original time
series x(t) (that is, N ≡ t). Notice that the distinctive band pat-
tern of the attractor is recovered, although in a simplified manner
where the fine structure is replaced by single lines of constant de-
gree. The HV algorithm transforms the multifractal attractor into
a discrete set of connectivities, whose evolution mimics the in-
tertwined fluctuations of the map. It is convenient to write the
node index N in the form N ≡ m2 j , where j = 0,1,2, . . . and
m = 1,3,5, . . . , so that running over the index j with m fixed se-
lects subsequences of data or nodes placed along lines with fixed
slope. For illustrative purposes, the order of visits to either the
associated data or nodes in some of these subsequences are ex-
plicitly shown in both panels of Fig. 2, as well as in the upper
panel. Notice that along these subsequences, expk(N) increases
as a power law (i.e. subexponentially), and corresponds to data
with increasing larger values (upper panel). This is reminiscent of
the data subsequences highlighted in the left panel, whose values
z(t) = f (1/2) − x(t) also show a monotonic power law decay.

From the direct observation of Fig. 2 it is clear that all trajectory
positions within each band in the left panel (attractor) become
nodes with the same degree in the right panel (network). It is also
worth noting at this point that there exists a degeneracy in the po-
sitions of trajectories that are initiated off, but close to, the attrac-
tor positions. In particular, if an ensemble of uniformly-distributed
initial positions is placed in a small interval around x = 1/2 their
trajectories expand while remaining uniformly-distributed at later
iteration times [2,3] (see discussion below) and the HV algorithm
assigns to all of them the same Feigenbaum graph. This degeneracy
accounts for the universal feature that only a single Feigenbaum
graph represents the transition to chaos for all unimodal maps. It
also determines the way in which fluctuations in trajectory separa-
tions translate into their respective degree fluctuations: see Fig. 3,
where we plot in logarithmic scales the distance of initially nearby
trajectories for specific values of a time subsequence, and compare
the expansion of this distance with the increment of the degree
of the associated Feigenbaum graph along the same node subse-
quence, as highlighted in the right panel of Fig. 2. The properties of
trajectory separation are thereby inherited by the graph and can be
quantified through the increasing sequences of values for expk(N).

Let us focus now in the Feigenbaum graph. The relabeling
N ≡ m2 j generates a one-to-one tiling of the natural numbers.
The aforementioned constant degree and fixed-slope lines in the
right panel of Fig. 2 are, respectively, k(N ≡ m2 j) = 2 j + 2, m =
1,3,5, . . . , j fixed, and k(N ≡ m2 j) = 2 j + 2, j = 0,1,2, . . . ,
m fixed (for example, the first path highlighted in red corresponds
to m = 1, j = 0,1,2, . . .). The scaling property associated with
the former case is that all horizontal lines with constant degree
k = 2 j + 2, j fixed, can be overlapped into the bottom line k = 2,
j = 0, via consecutive translations each consisting of a shift of 2
in k and a shift of log 2 in log N , that is, k(N/2) = k(N)−2, or alter-
natively, exp k(N/2) = exp(−2) · expk(N). This scaling property has
a parallel for the trajectory within the Feigenbaum attractor where
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Fig. 2. Top: Series x(t) as a function of time t for the first 106 data generated from a logistic map at the period-doubling accumulation point (only the first 33 data are
shown). The data highlighted in red are associated with specific subsequences of nodes (see the text). Left: Log–log plot of the rescaled variable z(t) = f (1/2) − x(t) as a
function of t , for the same series as the upper panel. This rescaling is performed to reflect the multifractal structure of the attractor [2,3]. The order of visits to some specific
data subsequences is highlighted. Right: Log–log plot of exp k(N) as a function of the node N of the Feigenbaum graph generated from the same time series as for the upper
panel, where N = t . The distinctive band pattern of the attractor is recovered, although in a simplified manner where the fine structure is replaced by single lines of constant
degree. The order of visits to some specific node subsequences is highlighted (see the text). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

the shift of 2 in k is replaced by a shift of 2 logα, where α is the
absolute value of the Feigenbaum constant [2,3]. The scaling prop-
erty associated with the latter case is seen via the collapse of all
fixed-slope lines of data into a single sequence of values aligned
along the first m = 1 subsequence k(2 j) = 2 j + 2, j = 0,1,2, . . . ,
when the numbers of nodes for each of the other subsequences
are rescaled consecutively by N/m, m = 3,5,7, . . . .

3. Fluctuating dynamics and graph-theoretical Lyapunov
exponents

We recall that the standard Lyapunov exponent λ accounts for
the degree of exponential separation of nearby trajectories, such
that two trajectories whose initial separation is d(0) evolve with
time distancing from each other as d(t) ∼ d(0)exp(λt), t ' 1,
where d(t) = |xt − x′

t |. The sensitivity to initial conditions is ξ(t) =
d(t)/d(0) and the general definition of the Lyapunov exponent is

λ = lim
t→∞

1
t

log ξ(t). (1)

Deterministic fluctuations about λ > 0 are permanently put out
when t → ∞, but, as mentioned, at the period-doubling accumu-
lation points of unimodal maps λ = 0 and trajectories display suc-
cessive subexponential separation and convergence for all t . Two
possible extensions of the standard Lyapunov exponent have been

used when λ = 0 while the amplitude of the fluctuations grows as
a power law, or, equivalently, expansion and contraction rates of
trajectories are logarithmic in time: Mori et al. [14] suggested the
expression

λM = 1
log t

log ξ(t). (2)

Although this expression captures subexponential fluctuation rates,
this quantity is not well defined if we want to measure the mag-
nitude of rates per unit time, in which case we need a quantity that
grows linearly in time. This is important if we want to relate the
growth of fluctuations to some kind of entropic rates that derive
from an extensive entropy expression. In this respect a better-
suited alternative for capturing subexponential fluctuations is to
deform the logarithm in Eq. (1) by an amount that recovers the
linear growth present for λ > 0. This is

λq = 1
t

logq ξ(t), (3)

with logq x ≡ (x1−q −1)/(1−q) (log x is restored in the limit q → 1)
where the extent of deformation q is such that while the expan-
sion ξ(t) is subexponential, logq ξ(t) grows linearly with t [2,3].
Notice that we have eliminated the t → ∞ limit in the defini-
tion of the generalized Lyapunov exponents since fluctuations are
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Fig. 3. Log–log plot of the distance between two nearby trajectories d(t) = |x(t) −
x′(t)| close to x = 1/2, where d(0) = 10−6, measured at a precise time sequence
t = 2 j , j = 1,2,3, . . . (this path is also highlighted in the left panel of Fig. 2). Along
this path trajectories evidence a subexponential expansion characterized by a power
law separation. Note that both trajectories generate the same Feigenbaum graph,
whose degree increases along this concrete path in the same vein as the trajectory
separation: the network inherits the properties of trajectory expansion in the hier-
archy of degrees (see right panel of Fig. 2). A similar behavior holds for trajectory
separation along other paths.

present for all values of t and the objective is to characterize them
via a spectrum of generalized exponents [2,3,14].

We define now a connectivity expansion rate for the Feigen-
baum graph under study. Since the graph is connected by con-
struction (all nodes have degree k " 2), the uncertainty is only as-
sociated with a rescaled degree k+ ≡ k−2. To keep notation simple
we make use of this variable and drop the subindex + from now
on. The formal network analog of the sensitivity to initial condi-
tions ξ(t) has as a natural definition ξ(N) ≡ expk(N)/exp k(0) =
exp k(N), as suggested from Figs. 2 and 3, where we are implicitly
assuming that the expansion is always compared with the mini-
mal one expk(0) = 1 provided by nodes at positions m20 (i.e. with
k = 0). Accordingly, the standard network Lyapunov exponent is
defined as

λ ≡ lim
N→∞

1
N

log ξ(N). (4)

The value of k(N) oscillates with N (see Fig. 2) but its bounds grow
slower than N , as log N , and therefore in network context λ = 0, in
parallel to the ordinary Lyapunov exponent at the onset of chaos.
The logarithmic growth of the bounds of log ξ(N) = k(N) is readily
seen by writing k(N = m2 j) = 2 j as

k(N) = 2
log 2

log
(

N
m

)
. (5)

A first approach to study the subexponential fluctuations is to pro-
ceed à la Mori and define the following graph-theoretical general-
ized exponent

λM = 1
log N

log ξ(N) = k(N)

log N
. (6)

To visualize the network growth paths N = m2 j , where m =
1,3,5, . . . is fixed to a constant value and j = 1,2,3, . . . , the ex-
pression above for λM is written as

λM = 2 j

log(m2 j)
= 2 j

logm + j log 2
. (7)

A constant λM = 2/ log 2 for all j is obtained only when m = 1,
otherwise the same value is reached for all other m when j → ∞.

In general, a spectrum of Mori-like generalized exponents is ob-
tained by considering all paths (m, j) such that N → ∞.

As indicated, the preceding generalization of the Lyapunov ex-
ponent is not time extensive and it is therefore not useful if we
ultimately wish to relate the network link fluctuations to an en-
tropy growth rate. With this purpose in mind we deform the or-
dinary logarithm in log ξ(N) = k(N) into logq ξ(N) by an amount
q > 1 such that logq ξ(N) depends linearly in N , and define the
associated generalized graph-theoretical Lyapunov exponent as

λq = 1
$N

logq ξ(N), (8)

where $N = N − m is the lapse time between an initial condition
m20 where m is fixed (see Fig. 2), and position N . One obtains

λq = 2
m log 2

, (9)

with q = 1 − log 2/2 and j > 0. Eq. (8) can be corroborated via use
of ξ(N) = exp(2 j) together with the identifications of the other
quantities in it (note that j = 0 implies $N = 0 for which ξ(N) =
exp(0) = 1 and λq is trivially undefined).

According to Eq. (9) a spectrum of exponents is spanned by
running over the values of m, in parallel with the spectrum of
generalized exponents previously found at the transition to chaos
in unimodal maps [3], where the value of the parameter, q =
1 − log 2/2 in the Feigenbaum graph is to be compared with
q = 1 − log 2/ logα (where α is a Feigenbaum constant) in the uni-
modal map for trajectories originating at the most compact region
of the multifractal attractor that are seen to expand at prescribed
times when the least compact region of the multifractal is vis-
ited [3].

4. Entropic functionals and Pesin-like identities

To complete our arguments we summon up the persistency
property of trajectory distributions of unimodal maps at the
period-doubling onset of chaos. That is, for a small interval of
length l1 with N uniformly-distributed initial conditions around
the extremum of a unimodal map (e.g. x = 1/2 for the logistic
map we use), all trajectories behave similarly, remain uniformly-
distributed at later times, follow the concerted pattern shown in
the left panel of Fig. 2 (see [2,3] for details) and expand subexpo-
nentially at prescribed time paths (see Fig. 3). Studies of entropy
growth associated with an initial distribution of positions with it-
eration time t of several chaotic maps [15] have established that
a linear growth occurs during an intermediate stage in the evo-
lution of the entropy, after an initial transient dependent on the
initial distribution and before an asymptotic approach to a con-
stant equilibrium value. At the period-doubling transition to chaos
it was found [2,3] that (i) there is no initial transient if the initial
distribution is uniform and defined around a small interval of an
attractor position, and (ii) the distribution remains uniform for an
extended period of time due to the subexponential dynamics. We
denote this distribution by π(t) = 1/W (t) where W (1) = l1/N is
the number of cells that tile the initial interval l1, and lt is the total
length of the interval that contains the trajectories at time t . Since
iteration-time dependence transforms into node-value dependence
we inquire about how π scales along the set of nodes N = 2 j with
k = 2 j links, j = 0,1,2, . . . , that is, while π is defined in the map
its properties are reflected in the network. After t = 2 j iterations,
the loss of information associated with the fact that the same net-
work is generated by all of the N initial conditions is represented
in the network context by the expansion of the initial interval l1
into lt = expk(2 j) = l1 exp(2 j) after t = 2 j . Therefore we find that
at time t = 2 j the network scaling properties prescribe a larger
number of cells to tile the new interval W (2 j) = W (1)exp k(2 j).
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After normalization, we find that the j dependence of π reads

π
(
2 j) = W −1

j = exp(−2 j). (10)

That is, the uniform distributions π for the consecutive node-
connectivity pairs (2 j,2 j) and (2 j+1,2( j + 1)) scale with the same
factors noticed above when discussing the right panel of Fig. 2.
Namely, when m = 1 these pairs can be made equal by a shift of
log 2 in log N and a shift of 2 in k. By extension of the argument
the same expression holds for all other values of m. Since

W j = exp(2 j) =
(

N
m

)2/ log 2

, (11)

the ordinary entropy associated with π grows logarithmically with
the number of nodes N , S1[π(N)] = log W j ∼ log N . However, the
q-deformed entropy

Sq
[
π( j)

]
= logq W j = 1

1 − q

[
W 1−q

j − 1
]
, (12)

where the amount of deformation q of the logarithm has the same
value as before, grows linearly with N , as W j can be rewritten as

W j = expq[λq$N], (13)

with q = 1 − log 2/2 and λq = 2/(m log 2). Therefore, if we define
the entropy growth rate

hq
[
π(N)

]
≡ 1

N − m
Sq

[
π(N)

]
(14)

we obtain

hq
[
π(N)

]
= λq, (15)

a Pesin-like identity at the onset of chaos (effectively one identity
for each subsequence of node numbers given each by a value of
m = 1,3,5, . . .).

5. Conclusions

In conclusion, the transcription into a network of a special class
of time series, the trajectories associated with the attractor at the
period-doubling transition to chaos of unimodal maps, via the HV
algorithm has proved to be a valuable enterprise [6] as it has led
to the uncovering of a new property related to the Pesin iden-
tity in nonlinear dynamics. The HV method leads to a self-similar
network with a structure illustrated by the related networks of pe-
riods 2n , n = 0, . . . ,5, shown in Fig. 1. Under the HV algorithm
many nearby trajectory positions lead to the same network node
and degree, all positions within one band in the left panel of Fig. 2
lead to the same line of constant degree in the right panel of the
figure. Only when trajectory positions cross a gap between bands
in the left panel the corresponding node increases its degree by
two new links. Also trajectories off the attractor but close to it
transform into the same network structure. The degrees of the

nodes span all even numbers k = 2 j, j = 0,1,2, . . . , and we have
studied how these fluctuate as the number of nodes increases. The
fluctuations of the degree capture the core behavior of the fluc-
tuations of the sensitivity to initial conditions at the transition to
chaos and they are universal for all unimodal maps. The graph-
theoretical analogue of the sensitivity was identified as exp(k)
while the amplitude of the variations of k grows logarithmically
with the number of nodes N . These deterministic fluctuations are
described by a discrete spectrum of generalized graph-theoretical
Lyapunov exponents that appear to relate to an equivalent spec-
trum of generalized entropy growths, yielding a set of Pesin-like
identities. The definitions of these quantities involve a deforma-
tion of the ordinary logarithmic function that ensures their linear
growth with the number of nodes. Therefore the entropy expres-
sion involved is extensive and of the Tsallis type with a precisely
defined index q. A salient feature of the application of the HV al-
gorithm to dynamical systems time series is direct access to the
degree distribution and therefore to the entropy associated with it.
Therefore this seems to be a good tool to discover, or, inversely,
to construct, network entropy properties as studied here. The ca-
pability of the methodology employed in this study to reveal the
occurrence of structural elements of this nature in real networked
systems that grow in time [16,17] appears to be viable.
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