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Nonlinear drag forces and the thermostatistics of overdamped motion
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Diverse processes in statistical physics are usually analyzed on the assumption that the drag force acting on a
test particle moving in a resisting medium is linear on the velocity of the particle. However, nonlinear drag forces
do appear in relevant situations that are currently the focus of experimental and theoretical work. Motivated by
these developments, we explore the consequences of nonlinear drag forces for the thermostatistics of systems of
interacting particles performing overdamped motion. We derive a family of nonlinear Fokker-Planck equations
for these systems, taking into account the effects of nonlinear drag forces. We investigate the main properties
of these evolution equations, including an H -theorem, and obtain exact solutions of the stretched q-exponential
form.
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I. INTRODUCTION

Nonlinear Fokker-Planck equations (NLFPEs) [1] have
been recently applied to the study of diverse instances of
complex systems [2– 9]. Particular applications include type-
II superconductors [8,10], granular media [11], and self-
gravitating systems [12,13]. An NLFPE governs the behavior
of a time-dependent density ρ(r, t ), where r ∈ RN represents
a point in an appropriate N -dimensional configuration space.
One of the most intensively studied NLFPE comprises two
components: a power-law diffusion term and a linear drift
one [14]. In several of the above mentioned applications, the
density ρ(r, t ) has to be interpreted as a physical density
corresponding to the distribution of particles in configuration
space, and not as a statistical ensemble probability density
[8,10,15,16]. In these scenarios, the nonlinear diffusion term
constitutes an effective description of the interaction between
the particles of the system, while the drift term takes into
account the effects of other external forces that act on them.
Nonlinear diffusion also occurs in connection with other
phenomena [17,18] constituting, for instance, the basis of some
relevant phenomenological models for the spread of biological
populations [19– 22] and for the spread of energy in nonlinear
disordered lattices [23].

The nonlinear power-law Fokker-Planck equations exhibit
remarkable features that are both physically relevant and
mathematically interesting. They obey an H -theorem that can
be formulated in terms of a free-energy-like quantity [24],
associated with the Sq nonadditive entropic measures [25,26].
These entropic functionals have been recently applied to the
study of diverse phenomena in complex systems [27– 33]. In
some important cases, the nonlinear power-law Fokker-Planck

equations have exact analytical solutions of the q-Gaussian
shape, that can be interpreted as maximum entropy densities
optimizing the Sq measures under appropriate, simple con-
straints [25,27]. This is, indeed, one of the most important
manifestations of the deep connection that exists between the
nonlinear Fokker-Planck dynamics and the thermostatistical
formalism based on the Sq entropies. Although this connection
was discovered more than two decades ago [14], research on
its diverse physical implications has only flourished in recent
years (see, for instance, Refs. [2,15,34– 37] and references
therein).

In fact, the Sq-NLFPE connection [14] is central to one of
the best understood mechanisms accounting for the successful
phenomenological description of various complex systems by
the q-thermostatistical theory [27]. The experimental results
on granular media recently obtained by Combe et al. [11]
constitute a notable achievement along these lines. These
authors verified, within a 2% error and for a wide range of
the relevant experimental settings, a scale relation derived
theoretically in 1996 from the maximum Sq entropy solutions
of the power-law NLFPE [38]. This is arguably one of the most
remarkable quantitative predictions that has been made using
the thermostatistical theory based on the Sq entropies.

In most applications of the power-law NLFPEs to study the
thermostatistics of systems of short-range interacting particles,
performing overdamped motion under an external confining
potential, it is assumed that the drag force acting on the
particles depends linearly on velocity. This force is due to
the interaction between the particles constituting the system
under consideration and the medium in which these particles
are moving. Motivated by recent experimental and theoreti-
cal developments, concerning the drag forces acting on test
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particles moving in different types of media [39– 41], we will
explore in the present work the effects that nonlinearities in the
drag force have on the thermostatistics of the aforementioned
types of many-body systems. It has long been known that
other types of velocity dependence for drag forces, beyond
the linear one, do occur in nature. The theoretical study of
the dynamics of particles moving under different types of
drag forces goes back, at least, to Newton’s Principia (for
a nice discussion, see Chapters 19 and 20 of Ref. [42]).
However, in recent years there have been remarkable advances,
both at the theoretical and at the experimental levels, in the
detailed microscopic understanding of the drag forces on test
particles moving in different environments [39– 41]. These
investigations allowed the characterization of the types of
interactions between test particles and environment particles,
that lead to specific departures from linear drag. In this work we
consider the thermostatistics of systems of confined interacting
particles performing overdamped motion under nonlinear drag
forces. We derive an associated NLFPE and investigate its
physically relevant properties. In particular, we establish its
stationary-state solution and prove an H -theorem obeyed by a
free-energy functional that involves the entropy Sq . Moreover,
we obtain particular, semianalytic time-dependent solutions
and explore their main features.

II. THE NONLINEAR POWER-LAW FOKKER-PLANCK
EQUATION

The NLFPE with a power-law diffusion term reads

∂ρ

∂t
= D∇2

[

ρ

(
ρ

ρ0

)1−q
]

− ∇ · (ρ K ) , (1)

where D stands for the diffusion constant with [D(2 − q ) >
0], K (r ) denotes a drift force, and q is a dimensionless
parameter associated with the power-law nonlinear diffusion
term. The time-dependent density ρ(r, t ) and the constant ρ0
have dimensions of inverse (N -dimensional) volume. Equation
(1) is sometimes written in the guise ∂P

∂t
= D∇2(P 2−q ) − ∇ ·

(P K ), where P (r, t ) = ρ/ρ0 is a dimensionless quantity.
In the present work, we shall consider only drift fields

that are determined by the gradient of a potential function
U (r ), K (r ) = −∇U (that is, we are not going to consider curl
forces). We follow here the usual convention in the literature
on the Fokker-Planck equation, and call K a “force” and U a
“potential,” even though K does not have dimensions of force,
nor does U have dimensions of energy. As we shall see in Sec.
III, these two quantities are, however, respectively proportional
to a force and a potential energy with the correct dimensions.
The power-law NLFPE admits the q-exponential stationary
solution [27],

ρq (r ) = ρ0A expq[−βU (r )]

= ρ0A[1 − (1 − q )βU (r )]
1

1−q

+ , (2)

where A and β are positive constants satisfying (2 − q )βD =
Aq−1, and the q-exponential function, expq (x) = [1 + (1 −

q )x]
1

1−q

+ , vanishes for 1 + (1 − q )x ! 0. We assume that the
potential function U (r ) is bounded from below so that,
choosing appropriately the zero of energy, the minimum value

adopted by U (r ) is Umin = 0, and U (r ) " 0. We also assume
that the shape of U (r ) leads to a stationary distribution ρq (r )
of finite norm,

∫
ρq (r ) dN r = I < ∞. We do not require that

I = 1, because in many applications ρ represents a physical
density (as opposed to a probability one). The allowed range
of q values yielding stationary densities ρq , with finite norm,
depends on the form of the potential function U (r ). The
stationary density ρq (r ) coincides with the distribution that
optimizes the q entropy

Sq[ρ] = k

q − 1

∫
ρ

[

1 −
(

ρ

ρ0

)q−1
]

dN r , (3)

under the constraints associated with the norm and the mean
value ⟨U ⟩ =

∫
ρ UdN r of the potential [14,27]. The positive

constant k determines the dimensions of Sq , as well as the
units in which this quantity is measured. When q → 1 the
NLFPE reduces to the standard linear Fokker-Planck equation,
∂ρ
∂t

= D∇2ρ − ∇ · (ρ K ) . In this limit, the stationary solution
(2) reduces to the well-known exponential one, ρBG(r ) =
A exp[−βU (r )] , with βD = 1.

As already mentioned, the power-law NLFPE satisfies an
H -theorem formulated in terms of a free-energy-like quantity,
associated with the Sq entropic measures [24]

d

dt
[⟨U ⟩ − (D/k)Sq∗ [ρ]] ! 0. (4)

The functional Sq∗ corresponds to the index q∗ = 2 − q. For
integer values of the entropic parameter q, the power-law
NLFPE can be written in a simpler form by absorbing the
factor ρ

q−1
0 into the diffusion constant. That is, redefining the

diffusion constant as D = Dρ
q−1
0 , the NLFPE can be recast

under the guise

∂ρ

∂t
= D∇2(ρ2−q ) − ∇ · (ρ K ) . (5)

It should be emphasized that, even though (5) has the form
of the NLFPE for a dimensionless density, the quantity ρ
appearing in this equation still has the dimensions of inverse
volume.

III. POWER-LAW DRAG FORCES AND NONLINEAR
FOKKER-PLANCK EQUATIONS

It was shown in Ref. [8] that the power-law NLFPE can
be regarded as governing the evolution of the spatial density
of a system of particles with short-range interactions that
perform overdamped motion under the effect of an external
confining potential W (r ) (as we shall briefly explain below,
this potential W is proportional, but not identical, to the
potential U appearing in the NLFPE). This interpretation of
the power-law NLFPE turned out to be very fruitful and
led to a considerable amount of further investigations on the
thermostatistics of the above-mentioned many-body systems.
It is crucial to the theoretical developments reported in Ref. [8],
and to all the subsequent works along these lines, to assume
a linear dependence of the drag forces on velocity. This state
of affairs raises a natural question: Is it possible to extend the
approach advanced in Ref. [8] to scenarios involving nonlinear
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drag forces? To address this question is the the principal aim
of the present contribution.

We shall consider a system constituted by particles of mass
m that move in an N -dimensional space and interact via
short-range, repulsive forces. These particles are also under
the effects of an external confining potential W and of a drag
force due to a resisting medium. Therefore, there are three
contributions to the total force acting on one of these particles.
These contributions are given by the force arising from the
interaction with the other particles of the system, the force
derived from the potential W , and the nonlinear drag force

Fdrag = −α ṙ
∣∣∣∣

ṙ
v0

∣∣∣∣
λ

, (6)

characterized by the constants α > 0, v0 > 0, and the expo-
nent λ > −1. The condition λ > −1 is necessary for having
a drag force whose modulus is an increasing function of the
modulus of the particle’s velocity. The fact that the interaction
between the particles of the system is repulsive and has a
short-range implies that, at a given time, each particle only
interacts with those particles located within its immediate
neighborhood. This intuitive idea can be put in a precise
quantitative form, as we now briefly explain (see Ref. [8]
for more details). Let F (|r ′ − r|) " 0 be the strength of the
force felt by a particle located at r due to another particle
at r ′. Since this force is repulsive, its vector representation is
F (|r ′ − r|)(r − r ′)/|r ′ − r|. We assume that the strength F of
the interparticle force is a smooth function of r = |r ′ − r| that
decays fast enough so that the integral

∫ ∞
0 rNF (r )dr is con-

vergent. Moreover, the short-range character of the interaction
makes it reasonable to assume that the natural length scales
of the system are large compared with the range of distances
within which F (r ) is substantially different from zero. In
particular, over this range of distances the spatial density
ρ(r ) can be approximated as ρ(r ′) = ρ(r ) + (r ′ − r )(∇ρ)
(see Ref. [8] for a full discussion). Within this approximation,
the force Fint (r ) acting on a particle located at r , due to the
interaction with the other particles, can be written as

Fint = −G∇ρ , (7)

where G =
∫

rF (r )dN r = σN−1
∫ ∞

0 rNF (r )dr , and σN−1
stands for the total hypersolid angle corresponding to an
(N − 1)-dimensional sphere (that is, to the hypersurface of an
N -dimensional ball). One has σ0 = 2, σ1 = 2π , and σ2 = 4π .
In one dimension, the above force Fint formally corresponds
to the one arising from the interaction potential between pairs
of particles given by V (x1, x2) = Gδ(x2 − x1), where δ(x) is
Dirac’s delta function and x1,2 are the locations of the two
particles.

The above explained components of the total force acting
on a test particle imply that its motion is governed by

mr̈ = −G∇ρ − ∇W − α ṙ
∣∣∣∣

ṙ
v0

∣∣∣∣
λ

. (8)

If the term mr̈ , corresponding to inertial effects, is much
smaller than the other terms appearing in (8), then one has
overdamped motion,

ṙ
∣∣∣∣

ṙ
v0

∣∣∣∣
λ

= − G
α

(∇ρ) − 1
α

(∇W ). (9)

Solving (9) for ṙ , one obtains

ṙ = −
[
G
α

(∇ρ) + 1
α

(∇W )
] ∣∣∣∣

1
v0

[
G
α

(∇ρ) + 1
α

(∇W )
]∣∣∣∣

− λ
1+λ

.

(10)

The particle density ρ(x, t ), associated with a system of in-
teracting particles whose motion is governed by (9), satisfies a
continuity equation ∂ρ

∂t
+ ∇ · J = 0, where the density current

is

J = −ρ

[
G
α

(∇ρ) + 1
α

(∇W )
]

×
∣∣∣∣

1
v0

[
G
α

(∇ρ) + 1
α

(∇W )
]∣∣∣∣

− λ
1+λ

. (11)

After the identifications D → G
2α

and U → W
α

, this continuity
equation reduces to

∂ρ

∂t
= ∇ ·

{

ρ [∇(2Dρ + U )]
∣∣∣∣

1
v0

∇(2Dρ + U )
∣∣∣∣
− λ

1+λ

}

,

(12)

which constitutes a (highly) nonlinear Fokker-Planck equation.
Equation (12) is the evolution equation governing the evolution
of the density of a many-body system as the one considered
in Ref. [8], when one has nonlinear, power-law drag forces.
Indeed, when the drag forces are linear [corresponding the
λ = 0 in the drag force (6)], the above equation coincides with
the q = 0 case of the power-law NLFPE (5), which is relevant
in connection with the thermostatistics of systems of vortices
in type-II superconductors [8,10,15].

IV. STATIONARY SOLUTIONS AND H-THEOREM

In this section, we are going to investigate the stationary
solutions of the evolution equation (12) and also obtain an
H -theorem for this equation. When doing this, it will prove
enlightening to consider a more general equation that admits
(12) as a particular case. We shall then discuss the following
NLFPE:

∂ρ

∂t
= ∇ ·

(
ρ

{
∇

[
D

(
2 − q

1 − q

)(
ρ

ρ0

)1−q

+ U

]}

×
∣∣∣∣

1
v0

∇
[
D

(
2 − q

1 − q

)(
ρ

ρ0

)1−q

+ U

]∣∣∣∣
− λ

1+λ
)

. (13)

As is the case for the power-law NLFPE (1), if one wants to
work with dimensional quantities (as opposed to dimensionless
ones), it is convenient to introduce the constant ρ0 with
dimensions of inverse volume. The NLFPE equation (12)
obtained in the previous section constitutes the particular case
of (13) corresponding to q = 0. Indeed, it can be verified that
(13) reduces to (12) if one sets q = 0 and D = D/ρ0. As with
the power-law NLFPE (1), we shall assume that (2 − q )D > 0.
Equation (13) may look, at first sight, a bit intimidating.
However, some physically relevant aspects of this equation
lend themselves to analytical treatment. We are going to prove
that (13) admits q-exponential stationary solutions and that it
satisfies an H -theorem related to the Sq entropies.
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A. Stationary solutions

The NLFPE (13) admits stationary solutions ρq (r ) that
satisfy

ρq ∇
[

D
(

2 − q

1 − q

)(
ρq

ρ0

)1−q

+ U

]

= 0 , (14)

which implies that in the region where ρq ̸= 0,

D(2 − q )
(

ρq

ρ0

)1−q

+ (1 − q )U = η , (15)

with η a constant. It follows from (15) that

ρq (r ) = ρ0

[
η

(2 − q )D

] 1
1−q

[
1 − 1 − q

η
U (r )

] 1
1−q

+
. (16)

After making the identifications

β = 1/η , A =
[

η

(2 − q )D

] 1
1−q

, (17)

one finds that (2 − q )Dβ = Aq−1 and that the stationary
solution (16) has the same form as the stationary solution (2)
of the power-law NLFPE (1). This means that the stationary
densities ρq (r ) of systems of confined particles interacting
via short-range forces, and performing overdamped motion,
do not depend on the exponent λ characterizing the nonlinear
dependence of the drag forces on velocity. This is physically
reasonable, because the stationary solutions of the NLFPE
correspond to configurations of the particles for which the
interaction forces between them are balanced with the forces
due to the confining potential. However, the invariance of the
stationary solutions has potentially interesting implications for
the thesmostatistical theory associated with the Sq nonadditive
entropies. Some important applications of this theory are
based, essentially, on the fact that the NLFPEs describing
the systems under consideration admit maximum Sq entropy
stationary solutions. The fact that these solutions are robust, in
the sense of being preserved when nonlinearities in the drag
forces are at work, may considerably enlarge the range of
physical scenarios where the thermostatistics based on the Sq

measures is relevant.

B. H-Theorem

Let us consider the quantity

H = D
1 − q

∫
ρ

(
ρ

ρ0

)1−q

dN r +
∫

ρ U dN r. (18)

One has that

dH
dt

= D
(

2 − q

1 − q

) ∫ (
ρ

ρ0

)1−q
∂ρ

∂t
dN r +

∫
U

∂ρ

∂t
dN r.

(19)

We now substitute ∂ρ/∂t in (19) by the right-hand side of
the NLFPE (13). After some computations that involve an

integration by parts, one can verify that

dH
dt

= −
∫

ρ

{

D
(

2 − q

1 − q

)
∇

[(
ρ

ρ0

)1−q
]

+ ∇U

}2

×
∣∣∣∣∣

1
v0

[

D
(

2 − q

1 − q

)
∇

[(
ρ

ρ0

)1−q
]

+∇U

]∣∣∣∣∣

− λ
1+λ

dN r

! 0, (20)

which constitutes an H -theorem for the evolution equation
(13). The condition dH/dt = 0 only holds for stationary solu-
tions of the NLFPE (13) complying with (14). The functionalH
satisfying the H -theorem is closely related to the Sq entropies.
In fact, the H -theorem (20) can be expressed in terms of a
free-energy-like quantity, adopting the form (4), i.e.,

d

dt
[⟨U ⟩ − (D/k)Sq∗ [ρ]] ! 0, (21)

with q∗ = 2 − q. We see here another interesting invariance.
The form of free-energy-like quantity H complying with
an H -theorem is preserved when one introduces power-law
nonlinearities in the velocity dependence of the drag forces.
On the contrary, the rate of change of this quantity, dH/dt ,
does depend on the exponent λ characterizing the way in which
drag depends on velocity.

V. AN EXAMPLE WITH STRETCHED q-EXPONENTIAL
TIME-DEPENDENT SOLUTIONS

We are now going to discuss a particular, one-dimensional
example of the NLFPE (12) that admits exact, time-dependent
solutions having a stretched q-exponential form. Let us con-
sider the NLFPE

∂ρ

∂t
= ∂

∂x

{

ρ

[
∂

∂x
(2Dρ + U )

] ∣∣∣∣
1
v0

∂

∂x
(2Dρ + U )

∣∣∣∣
− λ

1+λ

}

,

(22)

which constitutes a one-dimensional instance of the NLFPE
(12), corresponding to the q = 0 case of the NLFPE (13), with

U (x) = C

∣∣∣∣
x

x0

∣∣∣∣
δ

x2, (23)

where C and x0 are positive constants with dimensions of
inverse time and length, respectively. In order for the potential
U (x) to be confining, and the NLFPE (22) to admit stationary
solutions, one must have δ > −2. The NLFPE (22) describes a
set of particles interacting via short-range forces, confined by
the potential W = αU , and performing overdamped motion
under the effect of the nonlinear drag force (6).

Replacing the ansatz

ρ(x, t ) = A(t )

[

1 − (1 − q )β(t )
∣∣∣∣
x

x0

∣∣∣∣
δ

x2

] 1
1−q

+

, (24)

into the evolution equation (22), it is possible to verify, after
some algebra, that (24) constitutes, for q = 0, a solution of
(22) provided that δ = λ, and the time-dependent parameters
A and β satisfy an appropriate pair of coupled equations of
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motion. Indeed, for the alluded q and δ one has

∂

∂x
(2Dρ + U ) = (λ + 2)(C − 2DAβ )

∣∣∣∣
x

x0

∣∣∣∣
λ

x ,

[
∂

∂x
(2Dρ + U )

]∣∣∣∣
1
v0

∂

∂x
(2Dρ + U )

∣∣∣∣
− λ

1+λ

= (λ + 2)
1

1+λ (C − 2DAβ )
∣∣∣∣
x0

v0
(2DAβ − C)

∣∣∣∣
− λ

1+λ

x. (25)

Inserting the ansatz (24) into the evolution equation (22),
and using the second equation in (25), it can be verified that
(24) is a solution of (22) if A and β comply with the following
coupled ordinary differential equations:

dA/dt = R A,
dβ/dt = (λ + 2) R β, (26)

where the time-dependent quantity R is given by

R = (λ + 2)
1

1+λ (C − 2DAβ )
∣∣∣∣
x0

v0
(2DAβ − C)

∣∣∣∣
− λ

1+λ

. (27)

Note that for λ = 0 one has δ = 0, and the density (24)
corresponds to a time-dependent q-Gaussian solution of a
power-law NLFPE associated with linear drag and with a
quadratic potential. We shall refer to the density (24) as a
“stretched q-exponential.” The solution (24) has cut-off points

at x = ± xm = ± x0(βx2
0 )−

1
λ+2 . The normalization of (24) is

given by

N =
∫ +xm

−xm

ρ(x, t )dx =
[

2(λ + 2)
λ + 3

]
Ax0

(
βx2

0

)− 1
λ+2 . (28)

It can be verified that the equations of motion (26) imply
that dN/dt = 0 which, in turn, means that A(x2

0β )−
1

λ+2 is an
integral of motion of the system (26). In other words,

A(t )
A0

=
[
β(t )
β0

] 1
λ+2

, (29)

where A0 > 0 and β0 > 0 are, respectively, the initial values
of the parameters A and β.

The equations of motion (26) guarantee that A(t ) > 0
and β(t ) > 0 for all times t > 0. It follows from (26) and
(27) that the values Astat and βstat of the parameters (A,β ),
corresponding to the stationary solution, satisfy 2DAstatβstat =
C. Combining this relation with (29), one obtains

Astat = A0

[
C

2Dβ0A0

] 1
3+λ

,

βstat = C

2DA0

[
2Dβ0A0

C

] 1
3+λ

. (30)

The time evolution of the parameters A(t ) and β(t ) are illus-
trated in Figs. 1 and 2, respectively, for a system characterized
by x0 = 1, v0 = 1, D = 1, C = 1, and λ = 1. The curves
shown in Figs. 1 and 2 correspond to different initial values
A0 and β0, all of them satisfying the same normalization
N = 1. The initial values β0 are indicated in the figures.
The corresponding initial values A0 are obtained from the
normalization condition, setting at the initial time the right-
hand side of (28) equal to 1. It is observed that, in all these cases,

 0.5
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 0  0.05  0.1  0.15  0.2  0.25  0.3

β 
(t

)

t

β0 = 0.5
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β0 = 2.0
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FIG. 1. Evolution of parameter β from the time-dependent solu-
tion (24) of the NLFPE (22) for different initial conditions A0,β0, and
for q = 0, x0 = 1, v0 = 1, D = 1, C = 1, and λ = 1. The initial
values of β are indicated in the figure. The corresponding initial
values of A are determined from the normalization condition N = 1.
Parameter β has dimensions of inverse squared length and is measured
in units of (1/x2

0 ). Time t is measured in units of (x0/v0 ).

the solution of the NLFPE relaxes to the stationary solution,
corresponding to the parameter values Astat and βstat.

Trajectories in the (β, A)-parameter plane, corresponding
to different initial conditions and different normalizations, are
depicted in Fig. 3. The curve corresponding to the stationary
values βstat, Astat is also plotted. Each point on this curve
represents a stationary solution with a different normalization
N . A time-dependent solution (24) corresponds to a point
that moves along one of the trajectories shown in Fig. 3. As
t → ∞, it approaches a stationary point βstat, Astat, either from
the left or from the right, depending on whether the initial
values of β and A are, respectively, smaller or larger than the
corresponding stationary values βstat and Astat.
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FIG. 2. Evolution of parameter A from the time-dependent solu-
tion (24) of the NLFPE (22) for q = 0, x0 = 1, v0 = 1, D = 1, C =
1, and λ = 1. The initial conditions A0, β0 considered in this figure
are the same as in Fig. 1. Parameter A has dimensions of inverse
length and is measured in units of (1/x0). Time t is measured in units
of (x0/v0 ).
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β (t)

N = 1.0, βstat = 0.81, Astat = 0.62
N = 1.5, βstat = 0.59, Astat = 0.84
N = 2.0, βstat = 0.48, Astat = 1.04
N = 3.0, βstat = 0.35, Astat = 1.41

Stationary Solutions

FIG. 3. Trajectories in the (β, A) plane corresponding to dif-
ferent initial conditions, plotted together with the hyperbola C =
2DAstatβstat , associated with the (β, A) values describing stationary
solutions. The relevant parameters characterizing the system are the
same as in Figs. 1 and 2. A is measured in units of (1/x0) and β in
units of (1/x2

0 ).

We shall now determine explicitly, for the time-dependent
solution (24) (q = 0), the time evolution of the quantity (18)
that satisfies the H -theorem (20). If one replaces the ansatz
(24) with q = 0, into (18), one obtains

H = N

2λ + 5

[
2(λ + 2)DA + C

β

]
. (31)

The stationary value of H is

Hstat = λ + 3
2λ + 5

(
NC

βstat

)
. (32)

The evolution of the quantity H, satisfying the H -theorem,
is exhibited in Fig. 4 for different initial conditions and for
the same set of parameters as those corresponding to Figs. 1
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FIG. 4. Evolution of the quantity H satisfying the H -theorem.
The inset depicts, in log-log scale, the behavior of H − Hstat against
time. The relevant parameters characterizing the system, and the initial
conditions, are the same as in Figs. 1 and 2. H is measured in units
of (v0x0 ) and t in units of (x0/v0 ).

and 2. It can be appreciated in this figure that H decreases
monotonically with time, consistently with the H -theorem and
in all cases tends to a value corresponding to the stationary
solution.

Let us consider the special case of no confinement (C = 0).
In this case, the system of particles spreads due to the repulsive
interactions, and the evolution of the particle density ρ is
determined by

dA/dt = R∗ A,
dβ/dt = (λ + 2) R∗ β, (33)

where [note that the quantity inside the absolute value symbols
in (27) is now positive]

R∗ = −
[

2(λ + 2)D
(

x0

v0

)
Aβ

] 1
1+λ

(
v0

x0

)
. (34)

Using (29), it follows from (33) that

dA

dt
= −

(
v0

x0

)[

2(λ + 2)D
(

x0

v0

)
β0A

(
A

A0

)λ+2
] 1

1+λ

A.

(35)

The above equation has solution

A(t ) = A0

[
1 + t

t0

]!

, (36)

where

! = −
(

1 + λ

3 + λ

)
,

t0 =
(

1 + λ

3 + λ

)(
x0

v0

)[
2(λ + 2)D

(
x0

v0

)
β0A0

]− 1
1+λ

. (37)

The time-dependent parameter β is then given by

β(t ) = β0

[
1 + t

t0

](2+λ) !

. (38)

Note that, as the time-dependent density relaxes to the station-
ary one, both A and β decay in a q-exponential fashion, with
λ-dependent effective values of the parameter q, respectively,
given by

q
(relax)
A = 1 − 1

!
= 2(2 + λ)

1 + λ
,

q
(relax)
β = 1 − 1

(2 + λ)!
= λ2 + 4λ + 5

(1 + λ)(2 + λ)
. (39)

In the present system we see that more than one q index
emerges. In fact, generally speaking, three or more such indices
do appear in many applications of q statistics. These sets of q
values are usually referred to as the q triplet and its extensions
[43– 45].

When there is no confinement (C = 0) the quantity satisfy-
ing the H -theorem evolves according to

H = NDA0

[
2(λ + 2)
2λ + 5

][
1 + t

t0

]!

, (40)

meaning that this free-energy-like measure also decays as
a q exponential, with q

(relax)
H = q

(relax)
A [see the first line of
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Eq. (39)]. This implies that, asymptotically, H decays as a
power law with exponent !.

VI. EXACT SOLUTIONS FOR GENERAL q-VALUES

The nonlinear Fokker-Planck equation

∂ρ

∂t
= ∂

∂x

(
ρ

{
∂

∂x

[
D

(
2 − q

1 − q

)(
ρ

ρ0

)1−q

+ U

]}

×
∣∣∣∣

1
v0

∂

∂x

[
D

(
2 − q

1 − q

)(
ρ

ρ0

)1−q

+ U

]∣∣∣∣
− λ

1+λ
)

, (41)

with (2 − q )D > 0 and a potential U given by (23), also
admits time-dependent solutions of the form (24) for general q
values, provided that δ = λ and, in order for the solution to be
normalizable, q < λ + 3 (note that these restrictions allow for
both q < 1 and q > 1). The time-dependent parameters A(t )
and β(t ) must obey the couple ordinary differential equations,

dA

dt
= RqA,

dβ

dt
= (λ + 2)Rqβ, (42)

with

Rq = (λ + 2)−
λ

1+λ

[

C − (2 − q )Dβ

(
A

ρ0

)1−q
]

×
∣∣∣∣∣x0

[

C − (2 − q )Dβ

(
A

ρ0

)1−q
]∣∣∣∣∣

− λ
1+λ

. (43)

The evolution equations (43) imply that A(t )/A0 =
(β(t )/β0)1/(2+λ) which, in turn, guarantees that the normal-
ization N of the time-dependent density is constant in time
[see Eq. (28)].

The stationary solution of (42) is

Astat = A0

(
ρ0

A0

) 1
1+(1−q )(2+λ)

[
C

(2 − q )Dβ0

] 1−q
1+(1−q )(2+λ)

βstat = β0

(
ρ0

A0

) 2+λ
1+(1−q )(2+λ)

[
C

(2 − q )Dβ0

] (1−q )(2+λ)
1+(1−q )(2+λ)

. (44)

The evolution equation (41) is the one-dimensional instance
of the nonlinear Fokker-Planck equation (13). For q = 0
equation (41) reduces to (22) if one sets D = D/ρ0.

It is worth mentioning that probability density functions of
the q-exponential form having [as the stretched q-exponential
solutions (24) with δ > 0 have] arguments neither linear nor
quadratic in the relevant dynamical variables are actually
observed experimentally. For instance, densities of that kind
describe experimental data on the distribution of velocity dif-
ferences in turbulent Couette-Taylor flows [46]. In a different
context, stretched q-exponential functions are also relevant
in connection with spin-glass relaxation in neutron spin-echo
experiments [47].

VII. CONCLUSIONS

In the present work, we have considered many-body sys-
tems consisting of confined particles interacting via short-
range forces, while performing overdamped motion, under the
effect of nonlinear drag forces with a power-law dependence
on velocity. In order to explore the thermostatistics of this
kind of systems, we derived a family of nonlinear Fokker-
Planck equations that provide an effective description of the
concomitant dynamics. We investigated the main properties
of these nonlinear Fokker-Planck equations. In particular, we
proved that they have maximum Sq entropy stationary solutions
and that they admit a free-energy-like quantity satisfying an
H -theorem. This quantity involves a power-law nonadditive
entropic functional Sq characterized by an appropriate value of
the q parameter. We also obtained, for particular confining po-
tentials and for the limit case of no confinement, semianalytic
time-dependent solutions of the above-mentioned nonlinear
Fokker-Planck equation, exhibiting the form of stretched q-
exponential densities. An interesting aspect of these solutions
is that they include instances corresponding to q > 1, where
the q-exponential densities have power-law asymptotically
decaying long tails. This is in contrast with various recent
studies on the Sq-NLFPE connection, which focused on q < 1
solutions with compact support (see Ref. [36] and references
therein).

The present results imply that the strong connection that
exists among the aforementioned many-body problems, their
associated nonlinear Fokker-Planck equations, and the thermo-
statistics based on the Sq nonadditive entropies is preserved
when power-law nonlinearities in the drag forces are intro-
duced.
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