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Curl forces and the nonlinear Fokker-Planck equation
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Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under
which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential
function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck
equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular
two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This
model describes a system of particles with short-range interactions, performing overdamped motion under drag
effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of
type-II superconductors. The relevance of the present developments to the study of complex systems in physics,
astronomy, and biology is discussed.
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I. INTRODUCTION

The nonlinear Fokker-Planck equation [1] constitutes a
powerful tool for the study of diverse phenomena in complex
systems [2–8], with applications including (among many
others) type-II superconductors [9], granular media [10], and
self-gravitating systems [11,12]. It governs the behavior of
a time-dependent density F (x,t), where x ∈ ℜN designates
a location in an N -dimensional configuration space. The
evolution of F is determined by two terms: a nonlinear
diffusion [13,14] term and a linear drift term (more general
equations with nonlinear drift terms have also been proposed,
but we are not going to consider them in the present work).
In several of the above-mentioned applications, the density F
is a real physical density (as opposed to a statistical ensemble
probability density) describing the evolving distribution of a
set of interacting particles executing overdamped motion in the
relevant configuration space [8,15]. In these kinds of scenarios,
the nonlinear diffusion term constitutes an effective description
of the interaction between the particles, while the drift term
describes the effects of other external forces acting upon them.
The nonlinear Fokker-Planck equations recently addressed
in the literature exhibit several interesting and physically
relevant properties. They obey an H theorem in terms of
a free-energy-like quantity [16]. In some important cases,
the nonlinear Fokker-Planck equations admit exact analytical
solutions of the q-Gaussian form that can be interpreted as
maximum entropy (q-maxent) densities obtainable from the
optimization under appropriate constraints of the nonadditive
power-law entropic functionals Sq [17,18]. Indeed, there
is a deep connection between the nonlinear Fokker-Planck
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dynamics and the generalized thermostatistics based on the Sq

entropies. Although this connection was first pointed out more
than 20 years ago [19], its full physical implications have
been systematically explored only in recent years (see, for
instance, [2,15,20–22] and references therein). A remarkable
example of this trend is given by experimental work on
granular media [10] that verifies, within a 2% error and for
a wide experimental range, a scale relation predicted earlier
on the basis of the theoretical analysis of q-Gaussian solutions
of the nonlinear Fokker-Planck equation [23]. The particular
case of the nonlinear Fokker-Planck equation with vanishing
drift corresponds to the porous media equation.

Virtually all the literature on the nonlinear Fokker-Planck
equation and its applications deals with Fokker-Planck equa-
tions in which the drift forces K can be derived from a
potential function V (x), leading to stationary densities that
are q exponentials of the potential V . In the present paper we
consider more general scenarios where the drift force K has,
besides a component given by minus the gradient of a potential
V , a term K̃ that does not come from a potential. In two or
three space dimensions, this situation corresponds to having
forces exhibiting a nonvanishing rotational or curl, which are
usually referred to as curl forces [24]. The incorporation of
curl forces enriches the dynamical features of the nonlinear
Fokker-Planck equations, enabling it to describe a wider set of
phenomena.

Curl forces, although not dynamically fundamental [25],
are nevertheless relevant as useful effective descriptions of
diverse physical problems, for example, the nonconservative
force fields generated by optical tweezers [26]. Dynamical
systems with curl forces have interesting properties that are
not yet fully understood and are the subject of current research
[25,27]. In the present work we investigate the behavior
of nonlinear Fokker-Planck equations under the presence
of curl forces. We determine the conditions under which
these evolution equations admit stationary solutions of the
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q-maxent form and satisfy an H theorem. We also discuss
in detail a two-dimensional example admitting analytical
time-dependent solutions that describes a set of interacting
particles undergoing overdamped motion under the drag effect
arising from a uniformly rotating medium.

II. NONLINEAR FOKKER-PLANCK EQUATION

In the present work we consider nonlinear Fokker-Planck
(NLFP) equations of the form

∂F

∂t
= D∇2[F 2−q] − ∇ · [F K ], (1)

where F (x,t) is a time-dependent density, D is a diffusion
constant, K (x) is a drift force, and q is a real parameter
characterizing the (power-law) nonlinearity appearing in the
diffusion term. The density F is a dimensionless quantity of
the form F = ρ(x,t)/ρ0, where ρ has dimensions of inverse
volume and ρ0 is a constant with the same dimensions as ρ.
Therefore, the dimensional density ρ(x,t) obeys the evolution
equation ∂[ρ/ρ0]/∂t = D∇2[(ρ/ρ0)2−q] − ∇ · [(ρ/ρ0)K ].

As already mentioned, in the most frequently studied case
of Eq. (1), the drift force K is assumed to arise from a potential
function V (x),

K = −∇V. (2)

The stationary solutions of the NLFP equation then satisfy

∇ · [D∇(F 2−q) + F (∇V )] = 0. (3)

Let us consider the q-statistical ansatz [18]

Fq = A expq[−βV (x)]
= A[1 − (1 − q)βV (x)]1/(1−q)

+ , (4)

where A and β are constants to be determined and the function
expq(z) = [1 + (1 − q)z]1/(1−q)

+ , usually referred to as the
q-exponential function, vanishes whenever 1 + (1 − q)z ! 0.
One finds that the ansatz given by (4) complies with the
equation

D∇(F 2−q) + F (∇V ) = 0, (5)

if

(2 − q)βD = Aq−1. (6)

It therefore satisfies also Eq. (3) and constitutes a stationary
solution of the NLFP equation. In summary, the q-exponential
ansatz (4) is a stationary solution of the NLFP equation if the
drift force K is derived from a potential and A and β satisfy
the relation (6).

We will assume that the stationary distribution Fq has
a finite norm, that is,

∫
Fq dN x = I < ∞. The specific

conditions required for Fq to have a finite norm (such as
the allowed range of q values) cannot be stated in general
because they depend on the particular form of the potential
function V (x). Since in many applications the solution of
the NLFP equation is interpreted as a physical density (as
opposed to a probability density), we assume a finite norm,
but not necessarily normalization to unity. Note that, due to
the nonlinear character of the Fokker-Planck equation under
consideration, the multiplicative factor A appearing in the
solution (4) cannot be chosen arbitrarily (as would be the

case for the linear Fokker-Planck equation). The parameter
A depends on the value of β through relation (6), implying
that a stationary solution normalized to one corresponds to a
particular β value, which in turn depends on the value of q.

The stationary density Fq can be regarded as a q-maxent
distribution, because it maximizes the nonadditive q-entropic
functional

Sq[F ] = 1
q − 1

∫
(F − Fq)dN x, (7)

under the constraints corresponding to the norm and the mean
value of the potential V [18,19]. In the limit q → 1, the
standard linear Fokker-Planck equation

∂F

∂t
= D∇2F − ∇ · [F K ] (8)

is recovered. In this limit, the q-maxent stationary density (4)
reduces to the exponential, Boltzmann-Gibbs-like density

FBG = 1
Z

exp
[
− 1

D
V (x)

]
, (9)

with the condition (6) becoming βD = 1, independent of
the normalization constant A. The density FBG is normal-
ized to one provided that Z =

∫
exp[− 1

D
V (x)]dN x. The

density FBG optimizes the Boltzmann-Gibbs entropy SBG =
−

∫
F ln FdN x, under the constraints of normalization and

the mean value ⟨V ⟩ of the potential V (consistently with the
fact that, in the limit q → 1, the entropic functional Sq reduces
to the standard Boltzmann-Gibbs entropy).

Note that a dynamical system with a phase space flux
of the form (2) (that is, of a gradient form) evolves always
downhill on the potential energy landscape so as to minimize
the potential energy function V (x). The components {Ki,i =
1, . . . ,N} of such a field satisfy

∂Ki

∂xj

= ∂Kj

∂xi

= ∂2V

∂xi∂xj

. (10)

In two or three dimensions, as is well known, fields K that do
not have the gradient form are fields of nonvanishing curl, i.e.,
K ̸= −∇V ⇐⇒ ∇ × K ̸= 0.

III. NONLINEAR FOKKER-PLANCK EQUATION WITH
CURL DRIFT FORCES: STATIONARY SOLUTIONS

Now we consider NLFP equations endowed with drift
forces having two terms, one exhibiting the gradient form and
the other not arising from the gradient of a potential. That is,
we consider drift fields of the form

K = G + K̃ , (11)

where the force G is equal to minus the gradient of some
potential function V (x), while the component K̃ does not
come from a potential (that is, ∂K̃i/∂xj ̸= ∂K̃j /∂xi). Our aim
is to determine under which conditions a density proportional
to the q exponential of the potential V still provides a
stationary solution of the NLFP equation, preserving thus
the link between this equation and the generalized nonex-
tensive thermostatistics. Substituting the above drift force K
and q-exponential density Fq (4) into the stationary NLFP
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equation (3), one obtains

D∇2[F 2−q
q

]
+ ∇ · [Fq(∇V )] − ∇ · [Fq K̃ ] = 0. (12)

It can be verified that, if A and β satisfy (6), the sum of the
first two terms in the above equation vanishes, since Fq is a
stationary solution of the NLFP equation (3) when the drift
field K consists solely of the gradient field G.

In order for Fq to comply also with the full NLFP
equation (12), including the drift contribution associated with
the nongradient field K̃ , it is then necessary that

∇ · [Fq K̃ ] = 0. (13)

If the above relation is satisfied, the density Fq constitutes a
stationary solution of the full NLFP equation, corresponding
to the complete drift force K = −(∇V ) + K̃ . To have the
q-maxent stationary solution, one therefore requires

∇ · {K̃A[1 − (1 − q)βV ]1/(1−q)} = 0, (14)

which in turn leads to the following relation between the
nongradient drift component K̃ and the potential function
V (x):

[1 − (1 − q)βV ](∇ · K̃ ) − β(K̃ · ∇V ) = 0. (15)

This is a consistency relation that the potential function
V , the nongradient force field K̃ , the Lagrange multiplier
β, and the entropic parameter q have to satisfy in order
that the nonlinear Fokker-Planck equation admits the q-
maxent stationary solution (4). The general (q,β)-dependent
equation (15) constitutes a rather complicated relation between
the nongradient field K̃ and the potential function V , which
is difficult to characterize. Moreover, this relation depends
explicitly on the value of β (besides depending, of course,
on the value of the q entropic parameter). This means that,
for given forms of K̃ (x) and V (x) and a given q value,
one may have stationary solutions of the q-maxent form (4),
only for particular values of β = β(q), which will in general
be functions of q, the β dependence and the q dependence
being thus highly intertwined. We will not pursue further an
analysis of these kinds of scenarios and will focus instead on
the case where (for given q values) there are solutions for a
continuous range of β values. In this case, we will see that
condition (15) decouples into two separate conditions, each
of them independent of both q and β. Having a continuous
range of allowed β values has the important advantage of
giving us the freedom to choose solutions with different
normalizations [note that the constant A in the stationary
solution (4) is a function of β]. In particular, one can choose
solutions normalized to one. Regarding this last point, it is
worth mentioning here that the q dependence of β reappears
when one considers only solutions normalized to unity [see
the discussion after Eq. (51)].

It follows from relation (15) that, in order for the NLFP
equation to admit the β-parametrized family of stationary
solutions (4), with a continuous allowed range of β values,
two conditions have to be fulfilled. On the one hand, the
nongradient component of the drift K̃ has to be a divergence-
free vector field

∇ · K̃ = 0. (16)

On the other hand, K̃ has to be everywhere orthogonal to the
gradient of the potential

K̃ · (∇V ) = 0. (17)

Notice that conditions (16) and (17) are not only sufficient
but also necessary conditions for the ansatz (4) to be a
stationary solution of the NLFP equation (1) for a continuous
range of β values. Indeed, if (4) solves (1) for such a
set of β values, the left-hand side of (15), which is an
inhomogeneous linear function of β, has to vanish for an
interval of values of β. This clearly implies that both the
independent term and the coefficient of the β-linear term
have to vanish individually, leading in turn to conditions (16)
and (17). It is interesting that, as already mentioned, these
conditions do not explicitly depend on the value of the q
parameter, constituting therefore a q-invariant structure. This
q invariance is remarkable since it incorporates both the q < 1
and q > 1 regimes, which in specific applications usually
correspond to quite different dynamics. The stationary solution
guaranteed by these conditions is a physical solution when
it is normalizable (otherwise, it is not physical, although still
formally a solution of the NLFP equation). The normalizability
of the stationary solution depends on the particular shape of the
potential V and on the value of q and, as already mentioned,
can only be studied on a case by case basis. The general
properties of the NLFP equations with curl forces analyzed
in Secs. III–VI are valid for general q values provided this
normalizability condition is satisfied.

In two or three space dimensions, the decomposition
K = G + K̃ , with G = −∇V and ∇ · K̃ = 0, resembles the
decomposition of a vector field into a curl-free (irrotational)
component and a solenoidal (divergence-free) component
arising from the celebrated Helmholtz theorem [28]. We
are not, however, imposing the boundary conditions on
the fields K , G, and K̃ , which are usually considered in
connection with the Helmholtz decomposition. Furthermore,
we require the point to point orthogonality of the irrotational
and the divergence-free components of K , which is not a
condition usually considered in connection with the Helmholtz
decomposition.

It is interesting that the Helmholtz-like decomposition
(11), with orthogonal irrotational and divergence-free parts
G · K̃ = 0, arises naturally in some circumstances. For in-
stance, the most general rotationally invariant vector field in
two dimensions has precisely this form. Indeed, such vector
fields are of the form

G = −g(r)er ,

K̃ = l(r)eθ , (18)

where g(r) and l(r) are functions of the radial coordinate r =
(x2 + y2)1/2 and er and eθ respectively denote the radial and
tangential unit vectors. It is clear that the field G in (18) is of
the form −∇V (r), with V (r) =

∫ r ′
g(r ′)dr ′, and that the field

K̃ satisfies ∇ · K̃ = 0 and G · K̃ = 0.
Summing up, we have thus determined that the NLFP

equation (1) having a nonpotential drift force of the form (11)
admits, for a continuous range of values of the parameter β,
the family of q-maxent stationary solutions (4) if and only if
the relations (16) and (17) are satisfied.
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IV. THE H THEOREM

We are now going to explore the possibility of formulating
an H theorem for the nonlinear Fokker-Planck equations,
endowed with a drift term involving a nonvanishing-curl
force K̃ , not derivable from the potential function V . Let us
first consider the time derivative of the power-law entropic
functional Sq∗ , with q∗ = 2 − q. This is a reasonable choice,
because q∗ is precisely the exponent that appears inside
the Laplacian term in the NLFP equation (1). The duality
q → 2 − q appears frequently in the q-generalized thermo-
statistical formalism [18]. We have

dSq∗

dt
= q∗

1 − q∗

∫
Fq∗−1 ∂F

∂t
dN x =Dq∗2

∫
F 2q∗−3|∇F |2dN x

+ q∗
∫

Fq∗−1(∇F ) · (∇V )dN x +
∫

Fq∗
(∇ · K̃ )dN x,

(19)

where we have used the norm preservation, i.e., d
dt

∫
FdN x =∫

∂F
∂t

dN x = 0. It is clear that the first term in the final
expression in (19) is positive definite. However, the second
and third terms do not have a definite sign. Consequently,
the time derivative of Sq∗ does not have a definite sign
and the entropic form Sq∗ does not itself verify an H theorem.
The last two terms in the expression for dSq∗

dt
, describing the

contribution of the drift term to the change in the entropy,
suggest that a linear combination of Sq∗ and the mean value of
the potential function V may comply with an H theorem. The
time derivative of ⟨V ⟩ =

∫
FV dN x is

d⟨V ⟩
dt

=
∫

V
∂F

∂t
dN x = −q∗D

∫
Fq∗−1(∇F ) · (∇V )dN x

−
∫

F |∇V |2dN x +
∫

F (∇V ) · K̃dN x. (20)

Combining now Eqs. (19) and (20) one obtains, after some
algebra,

d

dt
(DSq∗ − ⟨V ⟩) =

∫
F |q∗DFq∗−2(∇F ) + ∇V |2dN x

+
∫

Fq∗
(∇ · K̃ )dN x

+
∫

F (∇V ) · K̃dN x. (21)

If the curl component K̃ of the drift force complies with the
requirements given by Eqs. (16) and (17), which are necessary
and sufficient for the nonlinear Fokker-Planck equation to have
the family of q-maxent stationary solutions (4), it follows from
(21) that the nonlinear Fokker-Planck equation satisfies the H
theorem

d

dt
(DSq∗ − ⟨V ⟩) =

∫
F |q∗DFq∗−2(∇F ) + ∇V |2dN x

= ⟨|q∗DFq∗−2(∇F ) + ∇V |2⟩ " 0. (22)

It is worth stressing that the conditions (16) and (17) for having
stationary q-maxent solutions are essentially the same as those
for having an H theorem.

There is an interesting consequence of the H theorem in
relation to the uniqueness of the decomposition (11) of the

total drift force K into a gradient component G = −∇V and
an (orthogonal) divergence-free component K̃ . Let us assume
that that total drift force can be decomposed in this fashion in
two different ways, K = −∇V1 + K̃ 1 = −∇V2 + K̃ 2. If the
nonlinear Fokker-Planck equation admits a stationary solution
(of finite norm) Fstat, it follows from the H theorem (22)
that

∇V1 = ∇V2 = −q∗DF
q∗−2
stat (∇Fstat), (23)

which in turn implies also that K̃ 1 = K̃ 2. Consequently, if
the nonlinear Fokker-Planck equation admits a stationary
solution, the decomposition of the total drift force into
the sum of a gradient term and a divergence-free term is
unique.

V. QUADRATIC POTENTIAL AND LINEAR DRIFT

We now consider in detail the case of a quadratic potential
V and a linear drift K̃ . We will see that, in this case, the
conditions (16) and (17) are required even to have a stationary
solution of the q-exponential form (4) for one single value
of the parameter β. We assume a potential and a drift field,
respectively, of the forms

V (x) =
∑

ij

(aij xixj ) +
∑

i

(bixi), (24)

K̃i(x) =
∑

j

(cij xj ) + di, (25)

where K̃i(x) is the ith component of the drift field K̃ (x) and
aij , cij , bi , and di are constant coefficients. We can assume
aij = aji , although the cij are not necessarily symmetric.
Equation (15) leads to a set of constraints on these coefficients,
thus defining V (x) and K̃ (x). If we substitute Eqs. (24) and
(25) in (15), we obtain

{
1−(1 − q)β

[ ∑

ij

(aij xixj )+
∑

i

(bixi)
]}(∑

k

ckk

)

−β
∑

k

[ ∑

i

(ckixi)+dk

][ ∑

j

((akj +ajk)xj ) + bk

]
= 0.

(26)

Equation (26) is a second degree polynomial in the xi that is
equal to zero. Since this equality should hold for any value
of x, the coefficients of the different powers of the xi should
each be equal to zero. Therefore, by separately equating to
zero the independent zeroth-, first-, and second-order terms on
the left-hand side of (26), one obtains

∑

k

(ckk − βdkbk) = 0, (27a)

∑

k

[(1 − q)ckkbi + ckibk + (aki + aik)dk] = 0 ∀i, (27b)

∑

k

[(1 − q)ckk(aij + aji) +

cki(akj + ajk) + ckj (aki + aik)] = 0 ∀i,j . (27c)
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With symmetric aij , we now assume

det|aij | ̸= 0. (28)

This assumption is also necessary if V (x) should represent a
confining potential, leading to a normalizable stationary state
of the nonlinear Fokker-Planck equation.

If we introduce an appropriate shift in the xi coordinates, it
is possible to work using a potential V (x) (24) with no linear
terms. We thus define

xi = xi − ri, (29)

so that the ri are constants that can be derived from constraints,
as we will show. We can then express (24) in terms of the xi

as

V (x)=
∑

ij

aij [xixj+(xirj+xj ri)+rirj ]+
∑

i

bi(xi + ri).

(30)
The linear terms in (30) are now

∑

i

{[∑

j

(aij rj + ajirj )
]

+ bi

}
xi (31)

and they will vanish if the rj ’s satisfy

bi +
∑

j

(aij + aji)rj = 0 or

bi + 2
∑

j

aij rj = 0, i = 1, . . . ,N. (32)

The N Eqs. (32) can be solved for the rj ’s because the condition
in Eq. (28) holds. The constant term (

∑
i biri) + (

∑
ij aij rirj )

in the potential V can be ignored and eliminated: Since the
potential enters the NLFP equation only through its gradient,
this constant term has no physical significance. Therefore, in
terms of the shifted coordinates xi , we have

V (x) =
∑

ij

aij xixj , (33a)

K̃i(x) =
∑

j

(cij xj ) + di, (33b)

where di =
∑

j (cij rj ) + di . We thus see that, after an appro-
priate shift in the phase space variables, the problem reduces
to that of a homogeneous quadratic potential.

If the associated nonlinear Fokker-Planck equation admits
a q-maxent stationary solution, even for one single value of β,
it follows from (27a) that we must have

∑

j

cjj = 0 ⇒ ∇ · K̃ = 0, (34)

from which it follows that the condition K̃ · ∇V = 0 also
follows. In other words, for a quadratic potential V and a
linear drift K̃ , if one has a q-maxent stationary solution even
for one single value of β, it is possible after a coordinate shift
to recast the system in terms of a drift field, complying with
conditions (16) and (17).

VI. TWO-DIMENSIONAL SYSTEM WITH EXACT
TIME-DEPENDENT q-GAUSSIAN SOLUTIONS

We now consider, as an example of a time-dependent
solution of a nonlinear Fokker-Planck equation with a K̃ not
arising from a potential that admits a q-maxent stationary
solution, a two-dimensional system submitted to the following
quadratic potential and nongradient linear drift term. For
simplicity of notation, we will name the phase space state
variables x ≡ x1 and y ≡ x2, so the potential and drift term
can be expressed as

V (x) = a(x2 + y2), (35)

K̃ (x) = (−by,+bx). (36)

It is well known that most nonlinear differential equations
in physics, biology, and related areas do not admit general
analytical solutions. In some cases, however, one is fortunate
enough to have at least a particular analytical exact solution.
As we will presently show, this is what happens with the
nonlinear Fokker-Planck equation associated with the above
potential and drift field. No general analytical solution is
available, but it is possible to obtain a particular, exact,
time-dependent solution of the q-Gaussian form. Particular
analytical solutions of nonlinear differential equations are,
for a variety of reasons, of considerable value. They provide
concrete examples, where the kind of behavior exhibited by
the solutions can be studied in a detailed and transparent
form (even though the general solutions may have a much
richer dynamics). Particular analytical solutions may con-
stitute useful starting points for the construction of more
general, analytical, approximate solutions. They are also useful
to test the accuracy of numerical approaches for solving
the nonlinear equations under consideration. The case of
dynamical equations admitting exact q-Gaussian solutions is
especially relevant because q-Gaussian densities are actually
observed in nature, in diverse physical and biological scenarios
[18], making it imperative to identify and investigate all the
different dynamical mechanisms that may lead to q-Gaussian
solutions.

It can be verified that (35) and (36) satisfy conditions given
by Eqs. (16) and (17). The NLFP equation then has the form

∂F

∂t
= D∇2[F 2−q] + ∂[(2ax + by)F ]

∂x
+ ∂[(2ay − bx)F ]

∂y
.

(37)

We propose the ansatz

F (x,y,t) = η(t){1 − (1 − q)[α(t)x2

+ δ(t)xy + γ (t)y2]}1/(1−q)
+ , (38)

where η(t), α(t), δ(t), and γ (t) are time-dependent parameters.
This ansatz has a time-dependent, Tsallis, q-maximum entropy
(q-maxent) form, with the time dependence represented in the
parameters η, α, δ, and γ . We then define

ϕ = 1 − (1 − q)(αx2 + δxy + γy2), (39)
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calculate the terms of the nonlinear Fokker-Planck equation
(1), and obtain the expressions

∂F

∂t
= η̇ϕ1/(1−q) − η(α̇x2

+ δ̇xy + γ̇ y2)ϕq/(1−q), (40a)

∂2F 2−q

∂x2
= (2 − q)η2−q[−2αϕ1/(1−q)

+ (2αx + δy)2ϕq/(1−q)], (40b)

∂2F 2−q

∂y2
= (2 − q)η2−q[−2γ ϕ1/(1−q)

+ (2γy + δx)2ϕq/(1−q)], (40c)

∂[(2ax + by)F ]
∂x

= η[2aϕ1/(1−q) − (2ax + by)

×(2αx + δy)ϕq/(1−q)], (40d)

∂[(2ay − bx)F ]
∂y

= η[2aϕ1/(1−q) − (2ay − bx)

×(2γy + δx)ϕq/(1−q)]. (40e)

Next we substitute the right-hand side of Eqs. (40) into
the NLFP equation (37) and, with some algebra, obtain the
following set of ordinary differential equations for the time
evolution of the parameters η, α, δ, and γ :

dη

dt
= 4ηa − 2(2 − q)Dη2−q(α + γ ), (41a)

dα

dt
= −(2 − q)Dη1−q(4α2 + δ2) + 4aα − bδ, (41b)

dγ

dt
= −(2 − q)Dη1−q(4γ 2 + δ2) + 4aγ + bδ, (41c)

dδ

dt
= −4(2 − q)Dη1−qδ(α + γ ) + 4aδ + 2b(α − γ ).

(41d)

Therefore, the q-maxent ansatz (38) will be a solution of the
NLFP equation (37), provided the functions η(t), α(t), δ(t),
and γ (t) satisfy the set of four coupled ordinary differential
equations (41).

When we interpret a solution F (x1, . . . ,xN ,t) of the NLFP
equation (1) as a probability density in phase space or as a
physical density of particles or other entities we should require
that the norm I of F is finite, so that

I =
∫

F dx1dx2 · · · dxN ! ∞. (42)

For the particular density function (38) to have a finite
norm, the quadratic form αx2 + δxy + γy2 has to be positive
definite. This guarantees that the curves of constant density
(isodensity curves), given by αx2 + δxy + γy2 = const > 0,
correspond to ellipses. For q < 1, the density (38) has a
compact support: It has values different from zero, within a
region limited by the cutoff boundary given by the ellipse,
αx2 + δxy + γy2 = 1

1−q
. At this boundary, and outside it,

the density vanishes. To have elliptic isodensity curves, the

discriminant

ς = αγ − δ2

4
(43)

has to be positive. It follows from (41) that the time derivative
of the discriminant is

dς

dt
= [δ2 − 4αγ ][(2 − q)Dη1−q(α + γ ) − 2a]

= 4ς [2a − (2 − q)Dη1−q(α + γ )]. (44)

We see that the value of the discriminant is not constant in
time. However, Eq. (44) implies that the positive character of
ς is preserved during the time evolution of the system. For the
proposed q-statistical ansatz (38), we find, after some algebra,
that, given a positive value of the discriminant (43), the norm
(42) is finite for q < 2 and is equal to

I = πη

(2 − q)
√

αγ − δ2

4

. (45)

Therefore, the allowed values of the q parameter, for the system
considered in this section, are those smaller than 2.

After some more calculation, it is also possible to verify,
using the equations of motion (41), that

dI

dt
= ∂I

∂η

dη

dt
+ ∂I

∂α

dα

dt
+ ∂I

∂γ

dγ

dt
+ ∂I

∂δ

dδ

dt
= 0, (46)

so that I is a conserved quantity during the time evolution of
the system, as is to be expected. Let us also note that, at a given
time, all the isodensity curves of the density (38) are ellipses
having the same eccentricity,

e =

√√√√ 2
√

(α − γ )2 + δ2

α + γ +
√

(α − γ )2 + δ2
. (47)

The stationary solutions of the set of equations (41) determine
the values of the parameters ηstat, αstat, δstat, and γstat, in the
ansatz (38), corresponding to stationary solutions of the NLFP
equation (37). These stationary solutions are

ηstat =
[

a

(2 − q)Dαstat

]1/(1−q)

,

γstat = αstat,

δstat = 0. (48)

We see that the stationary solution is not unique. In fact,
Eqs. (48) determine a monoparametric family of stationary
solutions, parametrized by αstat. That is, for different values of
this parameter one obtains, through (48), different stationary
solutions. Each of these solutions has a different normalization,
given by [see Eq. (45)]

I = πηstat

(2 − q)αstat
. (49)

As we have already discussed, the norm I is preserved by the
time evolution. Combining (48) with (49), one can express the
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stationary solution in terms of the norm I by

ηstat =
[

aI

πD

]1/(2−q)

,

αstat = π

(2 − q)I

[
aI

πD

]1/(2−q)

,

γstat = αstat,

δstat = 0. (50)

It transpires from the above equations that the parameters
ηstat and αstat increase monotonically with a and decrease with
D. This corresponds to the fact that the stationary density
becomes more localized when the strength of the confining
potential (determined by the parameter a) increases, while it
tends to delocalize when the diffusion effects (characterized
by the constant D) become larger. The stationary density Fq ,
expressed as a function of the radial variable r = (x2 + y2)1/2,
is

Fq(r) = ηstat[1 − (1 − q)αstatr
2]1/(1−q)

+ . (51)

These stationary distributions are of the q-exponential form
(4). If one considers only solutions normalized to 1 then, for
each value of q, one has only one stationary distribution, with
a q-dependent β given by

βq = π

(2 − q)Ia

[
aI

πD

]1/(2−q)

. (52)

Models having a q-dependent β arise in the description of
some phenomena, such as the interoccurrence times between
losses in financial markets [see Fig. 3(b) in [29]], and also
in connection with the role of dimensionality in complex
networks (see Fig. 7 in [30]).

A density F (x,t), governed by the partial differential
equation (37), can be interpreted as describing the distribution
of a set of particles interacting via short-range interactions,
performing overdamped motion under the drag effects due
to a uniformly rotating medium, and confined by an external
harmonic potential. To see this, let us consider the equation of
motion of one individual test particle of this system

mr̈ = −∇Wint − ∇Wext − ,(ṙ − ṙR), (53)

where m is the mass of the test particle, Wint is the potential
function associated with the forces acting on the test particle
due to the other particles of the system, Wext is the external
confining potential, and , is a drag coefficient describing the
drag forces due to a resisting medium, which rotates uniformly
with an angular velocity - . Notice that the equation of motion
(53) is expressed with respect to an inertial reference frame
[with Cartesian coordinates (x,y)] and not with respect to the
rotating frame where the resisting medium is at rest. With
respect to the inertial frame, the local velocity ṙR of the
medium has components (−-y, +-x).

Since the interactions between the particles are short range,
we assume that the potential function Wint is a function of
the local density F , that is, Wint = D(F ). In the regime of
overdamped motion, Eq. (53) becomes

ṙ = − 1
,

∇Wint − 1
,

∇Wext + ṙR, (54)

 1
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FIG. 1. Evolution of the parameter α appearing in the time-
dependent solution (38) of the NLFP equation (37) for q = 0.5.
The units employed are defined in terms of the constants D and
b appearing in the NLFP equation. The parameter α has dimensions
of inverse squared length and is measured in units of b

8D
. The time t

is measured in units of 4
b
.

implying that the velocity ṙ of a particle in the system, at a
given time, is completely determined by its location r . It can
then be verified, after some calculations, that the continuity
equation in configuration space ∂F/∂t = −∇(ṙF ), describing
the evolution of the space density F of a set of particles moving
according to the equation of motion (54), is precisely the
NLFP equation (37), after the identifications D

,
= 2−q

1−q
DF 1−q ,

Wext
,

= ar2, and b = -.
An illustrative example of the time evolution of the q-

Gaussian solution (38) is provided in Figs. 1–4. In these
figures, the parameters α, γ , δ, and η, determining the evolving
size and shape of the two-dimensional q-Gaussian solution
(38), are depicted as a function of time. The different curves
shown in each figure correspond to the NLFP equation (37),
with q = 0.5, D = 0.5, a = 1, b = 4, and different initial

 1
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 1.6
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 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1  1.2
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(t
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t
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γ0 = 1.4
γ0 = 1.5
γ0 = 1.6
γ0 = 1.8
γ0 = 2.0
γ0 = 2.5

FIG. 2. Evolution of the parameter γ appearing in the time-
dependent solution (38) of the NLFP equation for q = 0.5. The
parameter γ has dimensions of inverse squared length. The units
employed are the same as in Fig. 1.
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FIG. 3. Evolution of the parameter δ appearing in the time-
dependent solution (38) of the NLFP equation for q = 0.5. The
parameter δ has dimensions of inverse squared length. The units
employed are the same as in Fig. 1.

conditions. The curves were therefore obtained from the
numerical integration of the set of coupled ordinary differential
equations (41). All solutions exhibited correspond to evolving
densities normalized to unity [that is, I = 1 in Eq. (45)]. The
initial conditions are α0 = 1 and δ0 = 0, with different initial
values of the parameter γ , as indicated in the figures. The initial
value of η is calculated from the initial values of the other three
parameters, using the normalization condition I = 1.

It can be appreciated from Figs. 1–4 that the different
initial densities considered (all having the same norm I = 1)
relax to the same final stationary distribution (characterized
by the same value of the norm). This stationary distribution is
rotationally symmetric. Consequently, the initial asymmetry
of the density tends to decrease as the evolution takes place
(the two axis of the isodensity curves tend to become equal
to each other). The oscillatory behavior of the parameter δ,
which takes alternating signs as time advances, indicates that

 0.45

 0.5

 0.55

 0.6

 0.65
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 0.75

 0.8

 0  0.2  0.4  0.6  0.8  1

η 
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t
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γ0 = 1.5
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γ0 = 1.8
γ0 = 2.0
γ0 = 2.5

FIG. 4. Evolution of the parameter η appearing in the time-
dependent solution (38) of the NLFP equation for q = 0.5. The
parameter η is dimensionless. The time t is measured in the same
units as in Fig. 1.
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 (
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FIG. 5. Evolution, for different q values, of the parameter α

appearing in the time-dependent solution (38) of the NLFP equation.
Dimensions and units are the same as in Fig. 1.

the asymmetric density rotates as the evolution proceeds. Note
that, at the times when δ = 0, the axis of the isodensity curves is
parallel to the coordinate axis. This happens at approximately
regular time intervals, indicating that the elliptical isodensity
curves rotate at an approximately constant mean angular
velocity. The oscillatory behavior associated with the rotation
affects the other variables (besides δ) as well, which also
exhibit oscillations whose amplitudes tend to decrease as the
density function F relaxes towards the stationary one.

We solved numerically the set of differential equations (41)
for different values of q, both smaller and larger than 1, and
found that the qualitative features of the corresponding time
evolution share, for all q values, some basic similarities. The
parameters α, δ, and γ always show first an oscillatory transient
and then they relax towards their stationary values. To illustrate
this, we show in Fig. 5 the evolution of the parameter α for
different values of q and the initial condition α0 = 1, δ0 = 0,
and γ0 = 2.5. In all cases, we consider an initial distribution

0
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 0.3

 0.4

 0.5

 0.6

0  0.2  0.4  0.6  0.8 1  1.2  1.4

e(
t)

t

q = -1.0
q = 0.1
q = 0.5
q = 1.3
q = 1.6
q = 1.9

FIG. 6. Evolution, for different q values, of the eccentricity of the
isodensity curves, of the time-dependent solution (38) of the NLFP
equation. The eccentricity is dimensionless. The time t is measured
in the same units as in Fig. 1.

062105-8



CURL FORCES AND THE NONLINEAR FOKKER-PLANCK . . . PHYSICAL REVIEW E 94, 062105 (2016)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0  0.5

(a) (b)

1  1.5 2  2.5 3

F
q(

r)

r

q = -1.0
q = 0.5
q = 1.3
q = 1.6
q = 1.7

0

 0.5

1

 1.5

2

 2.5

3

-1 -0.5 0  0.5 1  1.5 2

st
at

 (
q)

q

FIG. 7. (a) Stationary distribution Fq as a function of r for different values of the parameter q. The quantity Fq is dimensionless and the
coordinate r is measured in units

√
8D
b

. (b) Stationary value of the parameter α as a function of q. The units for α are as in Fig. 1 and q is
dimensionless.

normalized to one, this condition determining the initial value
of the parameter η.

The evolution of the eccentricity of the isodensity curves
is shown, for various q values, in Fig. 6. It is clear that, in
all cases, the eccentricity decreases monotonically with time,
consistently with the fact that the time-dependent density (38)
relaxes towards the stationary density Fq(r) [see Eq. (51)],
which is rotationally symmetric. Our numerical results indicate
that the eccentricity of the isodensity curves decays in an
asymptotically exponential way. The stationary distribution
Fq(r) is depicted in Fig. 7(a) for different q values. Figure 7(b)
depicts the stationary value αstat of the parameter α appearing
in the solution (38) as a function of q. We see that αstat is not
a monotonic function of q; it has a maximum value around
q = 1.55. This helps to understand some aspects of Fig. 5.

Several features of the curves α(t) depicted in Fig. 5 are
determined by the relationship between the initial value α0,
which is the same for all these curves, and the asymptotic
q-dependent stationary values αstat(q) to which α tends at
large times. For instance, for q = −1, the stationary value
αstat(−1) is close to the initial condition α0, common to all
the cases considered in Fig. 5. Consequently, for q = −1, α
describes oscillations of small amplitude and quickly relaxes to
its stationary value. On the other hand, for increasing q values
up to q ≈ 1.55, αstat(q) increases with q [see Fig. 7(b)] and
the corresponding curves in Fig. 5 exhibit initial oscillations
of higher amplitude and later relax to values of αstat(q) that
are larger than the initial value α0. Finally, for q values larger
than q ≈ 1.55, the stationary αstat(q) decreases quickly with
q. For instance, for q = 1.9, the stationary value of α is well
below the initial value α0. This explains why the α(t) curve
corresponding to q = 1.9 crosses the already mentioned one
corresponding to α = −1.

VII. CONCLUSION

We investigated the main properties of multidimensional
NLFP equations, involving curl drift forces. We considered
drift force fields comprising both an irrotational term G,
derived from a potential function V (x), and a curl part, the
nongradient term K̃ . We determined the requirements that the

two parts G and K̃ of the drift field have to satisfy in order
for the corresponding NLFP equation to admit a stationary
solution of the q-maxent form [that is, a q exponential of
the potential function V (x), associated with the gradient
component of the drift force]. We found that this kind of
stationary solution exists for a continuous range of values of
the parameter β if and only if the curl part K̃ is divergence-
free and the curl part is orthogonal to the gradient part G.
We also proved that NLFP equations admitting a stationary
solution verify an H theorem in terms of an appropriate
linear combination of the Sq entropic functional and the
mean value of the potential V . Finally, we studied exact,
analytical, time-dependent solutions of a two-dimensional
NLFP equation, describing a system of interacting particles
in an overdamped motion regime under the drag effects
originating on a uniformly rotating medium. The connection
between rotation and NLFP equations with curl forces,
combined with the connection between q thermostatistics and
self-gravitating systems, indicates that those evolution equa-
tions may have applications in geophysical and astrophysical
problems. Previous successful physical applications of NLFP
equations also suggest that experimental implementations
involving rotating granular materials may also be worth
exploring.

Another potential field of application of the NLFP dynamics
investigated in the present work is the space-time behavior
of some biological systems [31]. Diffusion processes are
useful to model the spread of biological populations [32,33].
Nonlinear diffusion equations have been proposed as effective
descriptions of the interaction between the members of a
diffusing biological population [34–36]. On the other hand,
drift terms can be used to describe other effects on the motion
of the individuals. In this biological context, since the forces
are not fundamental but rather the effective result of a set of
complex circumstances, it is to be expected that nongradient
forces can be relevant. Nonlinear Fokker-Planck equations
with nongradient drift fields may also be useful in connection
with the generalized Boltzmann machine approach (based on a
q generalization of simulated annealing [37]) to neural network
models of memory [38] when considering asymmetric neural
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interactions. Any further developments along these or related
lines will be very welcome.
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